Linear programming - convex analysis

Click For Summary
SUMMARY

The discussion centers on the convexity of the function f(##x_1,x_2##) = min(##x_1,x_2##) and the objectives of two linear programming problems (P1 and P2). It is established that the function is concave rather than convex, as demonstrated through graphical analysis using tools like WolframAlpha and GraphToy. The participants also discuss methods to prove concavity using properties of the min function and its relationship to linear combinations of variables.

PREREQUISITES
  • Understanding of linear programming concepts
  • Familiarity with convex and concave functions
  • Basic knowledge of graphical analysis in R²
  • Experience with mathematical proofs and inequalities
NEXT STEPS
  • Study the properties of convex and concave functions in detail
  • Learn how to use WolframAlpha for mathematical visualization
  • Explore the implications of the min function in optimization problems
  • Investigate counterexamples to convexity in linear programming
USEFUL FOR

Students and professionals in mathematics, particularly those focused on optimization, linear programming, and convex analysis. This discussion is also beneficial for anyone looking to deepen their understanding of graphical methods in mathematical proofs.

drawar
Messages
130
Reaction score
0

Homework Statement


Given 2 problems:
(P1) min min(##x_1,x_2##)
s.t ##x_1, x_2 \geq 0##

(P2) min t
s.t ##t \leq x_1##
##t \leq x_2##
##x_1, x_2 \geq 0##

(i) Is the mapping f(##x_1,x_2##)=min(##x_1,x_2##) convex?
(ii) What are the objectives of (P1) and (P2)?

Homework Equations


The Attempt at a Solution


Assume f is indeed convex, then I have to prove the following:
For every ##(x_1,x_2), (y_1,y_2) \in \mathrm{R}^2##, and ##0 \leq \lambda \leq 1## ,
##f(\lambda(x_1,x_2)+(1-\lambda)(y_1,y_2)) \leq \lambda f(x_1,x_2) + (1-\lambda) f(y_1,y_2)## .
But how can I proceed from here?
Any help would be much appreciated, thanks!
 
Physics news on Phys.org
drawar said:

Homework Statement


Given 2 problems:
(P1) min min(##x_1,x_2##)
s.t ##x_1, x_2 \geq 0##

(P2) min t
s.t ##t \leq x_1##
##t \leq x_2##
##x_1, x_2 \geq 0##

(i) Is the mapping f(##x_1,x_2##)=min(##x_1,x_2##) convex?
(ii) What are the objectives of (P1) and (P2)?

Homework Equations





The Attempt at a Solution


Assume f is indeed convex, then I have to prove the following:
For every ##(x_1,x_2), (y_1,y_2) \in \mathrm{R}^2##, and ##0 \leq \lambda \leq 1## ,
##f(\lambda(x_1,x_2)+(1-\lambda)(y_1,y_2)) \leq \lambda f(x_1,x_2) + (1-\lambda) f(y_1,y_2)## .
But how can I proceed from here?
Any help would be much appreciated, thanks!

Start by trying to draw (or at least understand) a plot of z = f(x1,x2). Do not assume anything; gather the facts first.
 
Thanks, actually I had tried to plot f(x1,x2) in the first place but with no success, mainly due to the fact that f involves both x1 and x2. I know, however, how to plot f when it involves only x1 (or x2), for example f(x1)=max(2x1,-x1).

Btw, I've just given it another try after seeing your reply, this time I resort to WolframAlpha as I couldn't find a way to visualize it in R^2: http://www.wolframalpha.com/input/?i=plot+min(x,y) and judging by the graph, the function is indeed concave.

Then I've tried another tool called GraphToy at http://www.iquilezles.org/apps/graphtoy/ and voila, the plot is totally different from that produced by WolframAlpha, though it still represents a concave function. The graph is nice as it lies completely in R^2 but I don't know how it's drawn. Interestingly, it looks identical to that of f=min(x,0), and the graphs of f=min(x,2y) or f=min(x,3y) are nothing but the same as f=min(x,y).
 
drawar said:
Thanks, actually I had tried to plot f(x1,x2) in the first place but with no success, mainly due to the fact that f involves both x1 and x2. I know, however, how to plot f when it involves only x1 (or x2), for example f(x1)=max(2x1,-x1).

Btw, I've just given it another try after seeing your reply, this time I resort to WolframAlpha as I couldn't find a way to visualize it in R^2: http://www.wolframalpha.com/input/?i=plot+min(x,y) and judging by the graph, the function is indeed concave.

Then I've tried another tool called GraphToy at http://www.iquilezles.org/apps/graphtoy/ and voila, the plot is totally different from that produced by WolframAlpha, though it still represents a concave function. The graph is nice as it lies completely in R^2 but I don't know how it's drawn. Interestingly, it looks identical to that of f=min(x,0), and the graphs of f=min(x,2y) or f=min(x,3y) are nothing but the same as f=min(x,y).

"Niceness" is not a necessary property of a graph; correctness is better. It sounds as if you should abandon GraphToy as not worth using.

So, now that you think the function is concave, you can set about proving it. (Aren't you glad you did not waste a lot of time trying to prove it is convex?)
 
Yeah, it's a real time-saver. Btw, I think a simple counter-example will do but here's how the proof goes: (Please tell me if it needs any correction!)
$$f(\lambda(x_1,x_2)+(1-\lambda)(y_1,y_2))=f(\lambda x_1+(1-\lambda) y_1,\lambda x_1+(1-\lambda) y_1)\\
=\mathrm{min}(\lambda x_1+(1-\lambda) y_1,\lambda x_2+(1-\lambda) y_2)\\
\geq \mathrm{min}(\lambda x_1,\lambda x_2) + \mathrm{min}((1-\lambda) y_1, (1-\lambda) y_2)\\
=\lambda \mathrm{min}(x_1,x_2) + (1-\lambda) \mathrm{min}(y_1,y_2)\\
=\lambda f(x_1,x_2) + (1-\lambda) f(y_1,y_2).$$
 
drawar said:
Yeah, it's a real time-saver. Btw, I think a simple counter-example will do but here's how the proof goes: (Please tell me if it needs any correction!)
$$f(\lambda(x_1,x_2)+(1-\lambda)(y_1,y_2))=f(\lambda x_1+(1-\lambda) y_1,\lambda x_1+(1-\lambda) y_1)\\
=\mathrm{min}(\lambda x_1+(1-\lambda) y_1,\lambda x_2+(1-\lambda) y_2)\\
\geq \mathrm{min}(\lambda x_1,\lambda x_2) + \mathrm{min}((1-\lambda) y_1, (1-\lambda) y_2)\\
=\lambda \mathrm{min}(x_1,x_2) + (1-\lambda) \mathrm{min}(y_1,y_2)\\
=\lambda f(x_1,x_2) + (1-\lambda) f(y_1,y_2).$$

It looks OK. A somewhat different (if longer) approach that I, personally, prefer is:
(1) Note that ##\min(x_1,x_2) = x_1 + \min(x_2-x_1,0)##---easy to show and almost obvious.
(2) The single-variable function ##m(t) = \min(t,0)## is concave in ##t##---easy to prove and obvious graphically.
(3) Since ##m(.)## concave, any function of the form ##m(ax_1 + bx_2)## is a concave function of ##(x_1,x_2)## --- a standard result that is quite easy to prove, and should be part of the toolkit of everybody who uses convexity/concavity.
(4) Since the functions ##f_1(x_1,x_2) = x_1## and ##f_2(x_1,x_2) = m(x_2-x_1)## are concave in ##(x_1,x_2)##, so is their sum. Again, a standard result.

Finally, you need to find a pair ##(x_1,x_2)## and a ##\lambda \in (0,1)## that makes the inequality strict, just so that you can eliminate the possibility of convexity. (For example, the linear function satisfies both types of inequalities as equalities; it is both convex and concave. You want to eliminate that possibility for your function.)
 
Last edited:
  • Like
Likes   Reactions: 1 person

Similar threads

  • · Replies 3 ·
Replies
3
Views
5K
  • · Replies 6 ·
Replies
6
Views
3K
Replies
6
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
2K
  • · Replies 22 ·
Replies
22
Views
3K
  • · Replies 17 ·
Replies
17
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
9
Views
2K