I Lipschitz continuity of vector-valued function

Click For Summary
The discussion centers on the Lipschitz continuity of a vector-valued function defined in a convex and bounded set, as outlined in a lemma from a differential equations text. The lemma asserts that if the function is continuously differentiable in a neighborhood of the closure of the set, it is Lipschitz continuous within that set. A participant seeks clarification on how a specific inequality in the proof is derived, expressing confusion about the bounds obtained during the derivation process. Additionally, the necessity of the function being continuously differentiable in the closure of the set is discussed, emphasizing that this condition ensures the boundedness of derivatives, which is critical for the Lipschitz continuity conclusion. The conversation highlights the importance of understanding the implications of differentiability and compactness in the context of Lipschitz continuity.
psie
Messages
315
Reaction score
40
TL;DR
I have a question about a proof on Lipschitz continuity of a vector-valued function.
I'm reading Ordinary Differential Equations by Andersson and Böiers, although this is more related to multivariable calculus. There is a Lemma regarding Lipschitz continuity which I have a question about. Below ##\pmb{f}:\mathbf{R}^{n+1}\to \mathbf{R}^n ## is a vector-valued function defined by ##\pmb{f}=\pmb{f}(t,\pmb{x})##, where ##\pmb x## is a vector in ##\mathbf{R}^n## that depends on ##t##.

Lemma. Assume that ##\Omega\subseteq \mathbf{R}\times\mathbf{R}^n## is a convex and bounded set, and that the function ##\pmb{f}## is continuously differentiable in a neighborhood of ##\overline{\Omega}##. Then ##\pmb{f}## is Lipschitz continuous in ##\Omega##.

Proof. The line segment between two points ##(t,\pmb{x})## and ##(t,\pmb{y})## in ##\Omega## is contained in ##\Omega## by the assumption of convexity. Hence \begin{align} \pmb{f}(t,\pmb{x})-\pmb{f}(t,\pmb{y})&=\int_0^1\frac{\mathrm{d}}{\mathrm{d}s}\pmb{f}(t,\pmb{y}+s(\pmb{x}-\pmb{y}))\mathrm{d}s \tag1 \\ &=\int_0^1\sum_{i=1}^n\frac{\partial \pmb{f}}{\partial x_i}(t,\pmb{y}+s(\pmb{x}-\pmb{y}))(x_i-y_i)\mathrm{d}s,\tag2\end{align} by the chain rule. Set ##K=\max_i\sup_{\Omega}\left|\frac{\partial f}{\partial x_i}\right|## (which exists by assumption). Then $$|\pmb{f}(t,\pmb{x})-\pmb{f}(t,\pmb{y})|\leq\int_0^1 nK|\pmb{x}-\pmb{y}|\mathrm{d}s=nK|\pmb{x}-\pmb{y}|.\tag3$$

Here's my understanding of the notation. In ##(2)##, ##\frac{\partial \pmb{f}}{\partial x_i}(t,\pmb{y}+s(\pmb{x}-\pmb{y}))## is a vector evaluated at ##(t,\pmb{y}+s(\pmb{x}-\pmb{y}))##. ##\frac{\partial}{\partial x_i}## denotes the partial derivative of ##\pmb{f}(t,x_1,\ldots,x_n)## with respect ##x_i## (a better notation in ##(2)## would probably be ##\frac{\partial}{\partial z_i}##, as ##\pmb{x}## is already being used to denote a vector). More precisely, if ##f_1,\ldots,f_n## are the components of ##\pmb{f}##, then $$\frac{\partial \pmb{f}}{\partial x_i}(t,\pmb{y}+s(\pmb{x}-\pmb{y}))=\begin{pmatrix}
\frac{\partial f_1}{\partial x_i}(t,\pmb{y}+s(\pmb{x}-\pmb{y})) \\ \vdots \\ \frac{\partial f_n}{\partial x_i}(t,\pmb{y}+s(\pmb{x}-\pmb{y}))
\end{pmatrix}.\tag4$$

My question is that I do not really understand how ##(3)## is obtained. For the sake of brevity, I will write ##\frac{\partial \pmb{f}}{\partial x_i}## when I mean ##\frac{\partial \pmb{f}}{\partial x_i}(t,\pmb{y}+s(\pmb{x}-\pmb{y}))##. Suppose ##n=2##. Taking the norm (##\ell^2## norm to be exact) of ##(1)## and using ##\left\lVert\int_a^b \pmb{f}\right\rVert\le\int_a^b\left\lVert\pmb{f}\right\rVert##, we get
\begin{align}
\lVert\pmb{f}(t,\pmb{x})-\pmb{f}(t,\pmb{y})\rVert_2&=\left\lVert\int_0^1\sum_{i=1}^2\frac{\partial \pmb{f}}{\partial x_i}(x_i-y_i)\mathrm{d}s\right\rVert_2 \tag5\\
&\leq \int_0^1\left\lVert\sum_{i=1}^2\frac{\partial \pmb{f}}{\partial x_i}(x_i-y_i) \right\rVert_2 \mathrm{d}s \tag6
\end{align}
Next, using the triangle inequality, the norm inside the integral gets bounded by
\begin{align}
\left\lVert\sum_{i=1}^2\frac{\partial \pmb{f}}{\partial x_i}(x_i-y_i) \right\rVert_2 &\leq\left\lVert \frac{\partial \pmb{f}}{\partial x_1}(x_1-y_1)\right\rVert_2+\left\lVert \frac{\partial \pmb{f}}{\partial x_2}(x_2-y_2)\right\rVert_2. \tag7
\end{align}
The above terms on the right-hand side equal
\begin{align}
\sqrt{\left(\frac{\partial f_1}{\partial x_1}\right)^2+\left(\frac{\partial f_2}{\partial x_1}\right)^2}|x_1-y_1|+\sqrt{\left(\frac{\partial f_1}{\partial x_2}\right)^2+\left(\frac{\partial f_2}{\partial x_2}\right)^2}|x_2-y_2|.\tag8
\end{align}
Letting ##K=\max\limits_{i,j\in\{1,2\}}\sup\limits_{\Omega}\left|\frac{\partial f_i}{\partial x_j}\right|##, ##(8)## gets bounded by
\begin{align}
\sqrt{2}K|x_1-y_1|+\sqrt{2}K|x_2-y_2|=\sqrt{2}K(|x_1-y_1|+|x_2-y_2|) \tag9
\end{align}
which is clearly not equal to ##nK|\pmb{x}-\pmb{y}|##. I suspect I am doing something wrong, but I'm unable to spot it.
 
Physics news on Phys.org
A basic upper bound for the value of an integral of F: [a,b] \to \mathbb{R} is <br /> \int_a^b F(s)\,ds \leq (b- a)\sup_{s \in [a,b]} F(s). By extension, given I = \int_0^1 \sum_{i=1}^n\|\mathbf{F}_i(t,s)\||x_i - y_i|\,ds we can obtain \begin{split}<br /> I &amp;\leq \sum_{i=1}^n \sup_s \|\mathbf{F}_i\||x_i - y_i| \\<br /> &amp;\leq \left(\max_i \sup_s \|\mathbf{F}_i\|\right) \sum_{i=1}^n |x_i - y_i|.\end{split} Now <br /> \begin{split}<br /> \sum_{i=1}^n |x_i - y_i| &amp;= \left|(1, \dots, 1) \cdot (|x_1-y_1|, \dots, |x_n - y_n|)\right| \\<br /> &amp; \leq \| (1, \dots, 1) \| \|(|x_1-y_1|, \dots, |x_n - y_n|)\| \\<br /> &amp; = \sqrt{n} \|\mathbf{x} - \mathbf{y}\| \\<br /> &amp; \leq n \|\mathbf{x} - \mathbf{y}\|.\end{split} so that <br /> I \leq \left(\max_i \sup_s \|\mathbf{F}_i\|\right) \sum_{i=1}^n |x_i - y_i| \leq \left(\max_i \sup_s \|\mathbf{F}_i\|\right) n \|\mathbf{x} - \mathbf{y}\|.
 
Thank you for replying.

In the statement of the lemma, the authors stipulate that ##\pmb f## be ##C^1## in a neighborhood of the closure of ##\Omega## (I interpret ##\overline{\Omega}## to be the closure of ##\Omega##). Do you by any chance know why this is required? I see why we need the function to be ##C^1##, since we are integrating its derivative, but I do not see why this condition needs to be satisfied in the closure of ##\Omega##.
 
To guarantee boundedness of the derivatives we require that they be continuous (hence C^1) on a compact domain. This is the generalisation of the theorem that a function continuous on a closed, bounded interval is bounded, but a function continuous on an unclosed bounded interval may not be bounded (eg. x^{-1} on (0,1]).

For the Euclidean metric on \mathbb{R}^m, a subset is compact if and only if it is closed and bounded. We are given that \Omega \subset \mathbb{R} \times \mathbb{R}^n \simeq \mathbb{R}^{n+1} is bounded, but we are not told that it is closed; its closure, however, is certainly closed and bounded.
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
Replies
8
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K