MHB Locus in the complex plane.

juantheron
Messages
243
Reaction score
1
Area of Region Bounded by the locus of $z$ which satisfy the equation \displaystyle \arg \left(\frac{z+5i}{z-5i}\right) = \pm \frac{\pi}{4} is
 
Mathematics news on Phys.org
jacks said:
Area of Region Bounded by the locus of $z$ which satisfy the equation \displaystyle \arg \left(\frac{z+5i}{z-5i}\right) = \pm \frac{\pi}{4} is

What have you tried?
 
jacks said:
Area of Region Bounded by the locus of $z$ which satisfy the equation \displaystyle \arg \left(\frac{z+5i}{z-5i}\right) = \pm \frac{\pi}{4} is

You can take a geometric approach.

Your relation can be written \arg(z + 5) - \arg(z - 5) = \pm \frac{\pi}{4}, that is, \alpha - \beta =\pm \frac{\pi}{4}.

Consider the line segment joining z = 5 and z = -5 as the chord on a circle and consider the rays \arg(z +5) = \alpha and \arg(z - 5) = \beta subject to the restriction \alpha - \beta =\pm \frac{\pi}{4}. Consider the intersection of these rays and the angle between them at their intersection point. The angle is constant ... Now think of a circle theorem involving angles subtended by the same arc at the circumference ...

It's not hard to see you that have a circle with 'holes' at z = 5 and z = -5 (why?).

Now your job is to determine the radius of this circle and use it to get the area.
 
Last edited:
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top