Let us try a closed form for
$$I= \int^1_0 \frac{\log \left( 1-\frac{x}{z}\right) \log(1-x)}{x}\, dx \,\,\,\,\,\, \left| \frac{x}{z}\right| \leq 1$$
Integrating by parts we obtain :
$$I = -\text{Li}_2(1) \log \left(1-\frac{1}{z} \right) - \frac{1}{z}\int^1_0 \frac{\text{Li}_2(x) }{1-\frac{x}{z}}\, dx$$$$\frac{1}{z} \int^1_0 \frac{\text{Li}_2(x)}{1-\frac{x}{z}}\, dx $$
$$\sum_{k\geq 1} \frac{1}{z^{k} }\int^1_0 x^{k-1}\text{Li}_2(x)\, dx $$
$$\sum_{k\geq 1} \sum_{n\geq 1}\frac{1}{z^k n^2} \int^1_0 x^{k+n-1} dx $$
$$\sum_{k\geq 1} \sum_{n\geq 1}\frac{1}{z^k}\frac{1}{n^2(n+k)} $$
$$\sum_{k\geq 1}\frac{1}{z^k \, k } \sum_{n\geq 1} \left( \frac{1}{n^2}-\frac{1}{n(n+k)} \right) $$
$$\sum_{k\geq 1}\frac{1}{z^k\, k} \sum_{n\geq 1}\frac{1}{n^2 }\,- \sum_{k\geq 1}\frac{1}{z^k} \sum_{n\geq 1}\frac{k}{n \, k^2 (n+k)} $$
$$\zeta(2) \sum_{k\geq 1}\frac{1}{z^k \, k }\,\, - \,\sum_{k\geq 1}\frac{1}{z^k \, k^2 } \sum_{n\geq 1}\frac{k}{n(n+k)} $$
$$-\zeta(2) \log\left( 1-\frac{1}{z} \right) -\sum_{k\geq 1}\frac{H_k}{k^2} \, \left(\frac{1}{z}\right)^k $$
Hence we have the following
$$ \int^1_0 \frac{\log \left( 1-\frac{x}{z}\right) \log(1-x)}{x}\, dx=\sum_{k\geq 1}\frac{H_k}{k^2} \, \left(\frac{1}{z}\right)^k[/Math]
Or
$$ \int^1_0 \frac{\log \left( 1-x \, z \right) \log(1-x)}{x}\, dx=\sum_{k\geq 1}\frac{H_k}{k^2} \, z^k \,\,\,\,\, |z|\leq 1[/Math]