Major issue to handle this proof

  • Context: MHB 
  • Thread starter Thread starter nicekiller231
  • Start date Start date
  • Tags Tags
    Major Proof
Click For Summary
SUMMARY

The discussion focuses on the mathematical analysis of the probability function \( p(t) = e^{-bt} |\sin(at)| \) to determine the occurrence of event A over time. It is established that as the parameter \( b \) decreases, the frequency of event A increases, while the relationship with parameter \( a \) is confirmed to be directly proportional, meaning higher values of \( a \) lead to more frequent occurrences of A. The proof involves calculating the integral \( \phi(\omega, \beta) \) and analyzing its partial derivatives with respect to \( \omega \) and \( \beta \) to establish their influence on the occurrence rate.

PREREQUISITES
  • Understanding of probability functions and their properties
  • Familiarity with calculus, particularly integration and differentiation
  • Knowledge of trigonometric functions, specifically sine
  • Basic understanding of mathematical modeling and parameter analysis
NEXT STEPS
  • Study the properties of exponential decay functions in probability theory
  • Learn about the applications of Fourier series in analyzing periodic functions
  • Explore advanced integration techniques for evaluating complex integrals
  • Investigate the implications of parameter sensitivity in mathematical models
USEFUL FOR

Mathematicians, statisticians, and researchers involved in probability theory and mathematical modeling, particularly those interested in analyzing the effects of parameters on event occurrences.

nicekiller231
Messages
2
Reaction score
0
Good morning.

My problem is as follow:

I have an event assuming A. The probability that A occurs at time t is: $$p(t)= e^{-bt}*|\sin(at)|$$. Where a,b are positive parameters.

We divide the time in small step times let's say \delta t= 0.125, Then, we count how many time A occur for $t \in [0, \infty]$. Good to notice that $$\lim_{{t}\to{\infty}}p(t)=0$$

So my problem is to study the number of occurrence of A in the variation of the parameter a and b.
Which I can prove mathematically that for a lower value of b, A occurs more often and for the bigger value of a, A occurs more frequently.

I hope I was clear.
If anyone has any suggestion or idea about how could we do that.
Thank you.
 
Last edited:
Physics news on Phys.org
As far as b is concerned, noting that e^{-bt}, for fixed t, is a decreasing function of b (for example, the derivative with respect to b, -te^{-bt}, is negative) is sufficient. As for a, I don't believe it is necessarily true that "for the bigger value of a, A occurs more frequently."
 
HallsofIvy said:
As far as b is concerned, noting that e^{-bt}, for fixed t, is a decreasing function of b (for example, the derivative with respect to b, -te^{-bt}, is negative) is sufficient. As for a, I don't believe it is necessarily true that "for the bigger value of a, A occurs more frequently."

actually, It is the case for higher values of $a$ A occur more often. However, it is obvious for the parameter b.
But in my case I looking for a proof to that.

This is my way but I not sure if it is the right way to do it
$A(t)$ is $p(t)$, $b$ is $ \beta$ and a is $\omega $
we estimate $\phi(\omega , \beta)$, which is the primitive of a function $A(t)$ representing the individual's attraction to a rumor from the initial time (of hearing the rumor) until the loss of interest by that individual.
We prove that $\phi(\omega,\beta)$ is proportional to $\omega$ and inversely proportional to $\beta$.
\begin{align}
\phi(\omega,\beta)&=\int_0^\infty A(t) dt \\
&=\int_0^\infty A_{int} e^{-\beta t} |\sin(\omega t)| dt\qquad\mbox{for}\quad\beta >0
\label{equ:eq1}
\end{align}

Knowing that
\begin{equation*}
|\sin (\omega t)|=
\left\lbrace
\begin{array}{ll}
\sin (\omega t),\quad t \in [2k \pi/\omega,(2k+1)\pi/\omega]\\
-\sin (\omega t),\quad t \in [(2k+1)\pi/\omega, 2k\pi/\omega] \\

\end{array}
\right.
\quad \mbox{for } \omega \neq 0
\label{equ:eq2}
\end{equation*}
Knowing the expression of $|\sin(\omega t)|$, we obtain for $ \beta > 0$ and $\omega \neq 0$
\begin{align}
\phi(\omega,\beta)&= A_{int} \sum_{k=0}^{\infty} \int_{k \pi/\omega}^{(k+1)\pi/\omega} (-1)^k e^{-\beta t} \sin(\omega t) dt \\
& =A_{int} \sum_{k=0}^{\infty} \frac{\omega e^\frac{-\beta k \pi}{\omega}}{\beta^2+\omega^2}(1+e^\frac{-\beta \pi}{\omega}) \\
& =\frac{A_{int}\omega \left( 1+e^\frac{-\beta \pi}{\omega}\right) }{(\beta^2+\omega^2)(1-e^\frac{-\beta \pi}{\omega})}
\end{align}
Then we study $ \frac{\partial \phi(\omega,\beta) }{\partial \omega}$ and $ \frac{\partial \phi(\omega,\beta) }{\partial \beta}$ to highlight the influence of $\omega $ and $\beta$:
\begin{align}
\label{equ:eq8}
\phi_{\omega} &= - \frac{A_{int}\left(\left(\omega^3-\beta^2\omega\right)\mathrm{e}^\frac{2{\pi}\beta}{\omega}+\left(-2{\pi}\beta \omega^2-2{\pi}\beta^3\right)\mathrm{e}^\frac{{\pi}\beta}{\omega}-\omega^3+\beta^2\omega\right)}{\omega\left(\omega^2+\beta^2\right)^2\left(\mathrm{e}^\frac{{\pi}\beta}{w}-1\right)^2}\\
\label{equ:eq9}
\phi_{\beta} &= -\frac{2A_{int}\left(\omega\beta\mathrm{e}^\frac{2{\pi}\beta}{\omega}+\left({\pi}\beta^2+{\pi}\omega^2\right)\mathrm{e}^\frac{{\pi}\beta}{\omega}-\omega \beta\right)}{\left(\beta^2+\omega^2\right)^2\left(\mathrm{e}^\frac{{\pi}\beta}{\omega}-1\right)^2}
\end{align}The study of $ \frac{\partial \phi(\omega,\beta) }{\partial \omega}$ and $ \frac{\partial \phi(\omega,\beta) }{\partial \beta}$ shows that: First,
$\phi_\omega$ is positive for $\omega >0$ and $ \beta >0 $, from which we can conclude that $\phi(\omega,\beta)$ is proportional to $\omega$ in this interval.
Second, $\phi_\beta$ is a negative for $\beta > 0 $ and $ \omega >0$, from which we can conclude that $\phi(\omega,\beta)$ is inversely proportional to $\beta$ in the same interval.
 
Last edited:

Similar threads

  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 0 ·
Replies
0
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
Replies
8
Views
3K
  • · Replies 24 ·
Replies
24
Views
4K
  • · Replies 8 ·
Replies
8
Views
2K