Making a 2D Problem into a 1D Problem

  • Thread starter Thread starter chessguy103
  • Start date Start date
  • Tags Tags
    1d 2d
AI Thread Summary
The discussion focuses on converting a 2D pressure problem involving two bolted plates into a 1D beam problem to estimate the maximum distance between bolts. The pressure (w) in psi needs to be converted into a distributed load (q) in lb/in, which can be achieved by multiplying the pressure by the thickness of the beam. Participants emphasize the importance of considering the deformation characteristics of the plates and the strength of the bolts, recommending a safety factor to prevent failure. For accurate design, consulting mechanical engineering resources, such as Shigley's Design book, is advised. The goal is to ensure the structural integrity of the assembly under pressure.
chessguy103
Messages
13
Reaction score
3
TL;DR Summary
How can I take a 2D pressure problem and then it into a 1D beam problem?
Hi,

Forgive me for the crowded drawing, but please reference the attached screenshot. Let’s say I have 2 plates bolted together by some bolts (red), and on the inside is a pressure w pushing the top plate up, in psi (lb/in^2). In order to get an estimate for the maximum distance between bolts, I want to take the circled part and treat it as a 1D problem.

My question is, how do I take that w, and convert it into q in lb/in?

Thanks
 

Attachments

  • 86C5C921-DD87-49BB-B10B-E46037D4E242.jpeg
    86C5C921-DD87-49BB-B10B-E46037D4E242.jpeg
    39.5 KB · Views: 124
Engineering news on Phys.org
It is rather unclear just what "W" and "Q" are, could you give their definition?

For a simplified approach, take the area in square inches that is exposed to pressure and multiply by the pressure.
Total_Force (on plate) = Area(sq.in.) x Pressure (psi)

To find the force on each bolt, divide Total_Force by number_of_bolts.
force_per_bolt = (Total_Force) / (number_of_bolts)

Then you have to decide if the bolts you want to use are strong enough to hold the thing together. (don't forget a safety factor! You don't want it to take someones arm off if it fails.)

Also decide if the plates are stiff enough so they don't deform like a balloon under pressure; and strong enough that they don't tear through at the bolt heads.

For more details, we need one of the Mechanical Engineers to chime in.

Cheers,
Tom
 
  • Like
Likes Lnewqban and chessguy103
W is the pressure on the inside surface of the plate in psi, and q is the distributed load (lb/in) when looking at the problem from a 1D point of view, with 2 of the bolts acting as simple supports. The exact values don’t really matter. But let’s say I wanted to prescribe a certain deflection of that beam, and need to solve for L, the distance between the supports (aka bolts). That’s my goal.

So in order to go from psi to lb/in, would I multiply w by the “thickness” of the 1D beam that I’m considering to get to q?

I’m not sure if I’m thinking about this correctly, but that’s what I’m trying to get to.
 
An uniformly loaded plate deforms in
chessguy103 said:
Summary: How can I take a 2D pressure problem and then it into a 1D beam problem?

Hi,

Forgive me for the crowded drawing, but please reference the attached screenshot. Let’s say I have 2 plates bolted together by some bolts (red), and on the inside is a pressure w pushing the top plate up, in psi (lb/in^2). In order to get an estimate for the maximum distance between bolts, I want to take the circled part and treat it as a 1D problem.

My question is, how do I take that w, and convert it into q in lb/in?

Thanks
A plate bolted all around like that deforms very different from a beam supported by hinges.

Anyway, you could just imaginarily remove two rows of bolts on the longer side of the plate, and use the same value of pressure for uniformly distributed load and consider only the width of the plate supporting that load.

The remaining two rows of bolts will function more like two solid embedments at each end of the beam than hinges, but considering hinges would give you a higher value of safety factor.
 
Last edited:
Lnewqban said:
A plate bolted all around like that deforms very different from a beam supported by hinges.

Anyway, you could just imaginarily remove two rows of bolts on the longer side of the plate, and use the same value of pressure for uniformly distributed load and consider only the width of the plate supporting that load.

The remaining two rows of bolts will function more like two solid embedments at each end of the beam than hinges, but considering hinges would give you a higher value of safety factor.
If this is a real problem and not a purely academic one, you should consult Chapter 8 in Shigley's Design book (or a similar Machine Design book) to arrive a a proper bolt design that accounts for preload, tensile stress area, etc.
 
Last edited by a moderator:
Posted June 2024 - 15 years after starting this class. I have learned a whole lot. To get to the short course on making your stock car, late model, hobby stock E-mod handle, look at the index below. Read all posts on Roll Center, Jacking effect and Why does car drive straight to the wall when I gas it? Also read You really have two race cars. This will cover 90% of problems you have. Simply put, the car pushes going in and is loose coming out. You do not have enuff downforce on the right...
Thread 'Physics of Stretch: What pressure does a band apply on a cylinder?'
Scenario 1 (figure 1) A continuous loop of elastic material is stretched around two metal bars. The top bar is attached to a load cell that reads force. The lower bar can be moved downwards to stretch the elastic material. The lower bar is moved downwards until the two bars are 1190mm apart, stretching the elastic material. The bars are 5mm thick, so the total internal loop length is 1200mm (1190mm + 5mm + 5mm). At this level of stretch, the load cell reads 45N tensile force. Key numbers...
I'm trying to decide what size and type of galvanized steel I need for 2 cantilever extensions. The cantilever is 5 ft. The space between the two cantilever arms is a 17 ft Gap the center 7 ft of the 17 ft Gap we'll need to Bear approximately 17,000 lb spread evenly from the front of the cantilever to the back of the cantilever over 5 ft. I will put support beams across these cantilever arms to support the load evenly
Back
Top