MHB Making homogenous a wave equation

Markov2
Messages
149
Reaction score
0
Solve

$\begin{aligned} & {{u}_{tt}}={{u}_{xx}}+t,\text{ }t>0,\text{ }x\in \mathbb R, \\
& u(x,0)=x \\
& {{u}_{t}}(x,0)=1.
\end{aligned}
$

Okay first I should set $v(x,t)=u(x,t)-\dfrac16 t^3,$ then $u(x,t)=v(x,t)+\dfrac16 t^3$ so $u_{tt}=v_{tt}+t$ and $u_{xx}=v_{xx}$ so $v_{tt}+t=v_{xx}+t\implies v_{tt}=v_{xx},$ and $u(x,0)=v(x,0)$ and $u_t(x,0)=v_t(x,0),$ so I need to solve

$\begin{aligned} & {{v}_{tt}}={{v}_{xx}},\text{ }t>0,\text{ }x\in \mathbb R, \\
& v(x,0)=x \\
& {{v}_{t}}(x,0)=1.
\end{aligned}$

which is a simple application of the formula and then once found $v$ the problem is solved! Is it correct?
 
Physics news on Phys.org
So far so good.
 
Last edited by a moderator:
I have the equation ##F^x=m\frac {d}{dt}(\gamma v^x)##, where ##\gamma## is the Lorentz factor, and ##x## is a superscript, not an exponent. In my textbook the solution is given as ##\frac {F^x}{m}t=\frac {v^x}{\sqrt {1-v^{x^2}/c^2}}##. What bothers me is, when I separate the variables I get ##\frac {F^x}{m}dt=d(\gamma v^x)##. Can I simply consider ##d(\gamma v^x)## the variable of integration without any further considerations? Can I simply make the substitution ##\gamma v^x = u## and then...

Similar threads

  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 0 ·
Replies
0
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 19 ·
Replies
19
Views
4K
Replies
1
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
1
Views
2K