High School Is it possible to manipulate partial derivatives in this manner?

  • Thread starter Thread starter SiennaTheGr8
  • Start date Start date
Click For Summary
The discussion centers on the manipulation of partial derivatives in the context of variable transformations, specifically using expressions involving constants and variables. The original poster questions the legality of certain algebraic maneuvers with partial derivatives, particularly in the context of transforming expressions related to the four-potential under a Lorentz boost. Participants emphasize the importance of using the chain rule for such transformations and clarify the independence of certain variables involved. Ultimately, the poster expresses a newfound understanding of how to correctly apply these concepts in their calculations. The conversation highlights the complexities of handling partial derivatives and the necessity of adhering to established mathematical rules.
SiennaTheGr8
Messages
512
Reaction score
207
If I have an expression like ##\dfrac{\partial x}{\partial y}##, and I know that ##x = a + bc## and ##y = f + gh##, then I have:

##\dfrac{\partial (a + bc)}{\partial (f + gh)}##.

I'm wondering what kind of maneuvers are "legal" here. Say that ##b## and ##g## are constants, and the other symbols are variables. Could I, for example, do something like this?

##\dfrac{\partial a + b \, \partial c}{\partial f + g \, \partial h}##

And then even, say, split up the "fraction" and do something like this to each part?:

##\dfrac{\partial a}{\partial f + g \, \partial h} = \dfrac{\partial a \, \partial f - g \, \partial a \, \partial h}{(\partial f)^2 - (g \, \partial h)^2} = \dfrac{\partial a \, \partial f}{\partial f \left( \partial f - \frac{(g \, \partial h)^2}{\partial f} \right) } - \dfrac{g \, \partial a \, \partial h}{\partial h \left( \frac{(\partial f)^2}{\partial h} - g^2 \, \partial h \right) } = \dfrac{\partial a}{\partial f} [+] \dfrac{\partial a}{g \, \partial h}##,

where in the last step I set the only remaining 2nd-order partials to zero.

I'm asking because I had occasion to try using such "methods," and much to my surprise I ended up with the answer I was looking for. I just don't know whether that was coincidence or if this is all actually kosher.

[edit: changed - to +, indicated by square brackets]
 
Last edited:
Physics news on Phys.org
Your notation is a bit confusing are a, b, f, g, constant and c and h variable? In changing variables you should use the well know "chain rule".
 
No, ##b## and ##g## are the only constants.
 
If a,c,f, and h are independent variables and y does not depend and a and c and x does not depend on f and h then x is not a function of y.
BTW the last expression should have a plus sign.

Is this question a part of a larger problem?
 
gleem said:
BTW the last expression should have a plus sign.

Yes, thank you—fixed.

gleem said:
Is this question a part of a larger problem?

I'm trying to use the transformation of the four-potential ##(\phi, A_x, A_y, A_z)## under a Lorentz boost (along the ##x##-axis) to derive the transformation formulas for the electric and magnetic field components. As an example, I end up with:

##E_y^\prime = - \left( \dfrac{\partial \phi^\prime}{\partial y^\prime} + \dfrac{\partial A_y^\prime}{\partial (ct)^\prime} \right) = - \left( \dfrac{\partial \left( \gamma \phi - \gamma \beta A_x \right)}{\partial y} + \dfrac{\partial A_y}{\partial \left( \gamma ct - \gamma \beta x \right)} \right)##,

which I know is supposed to equal:

##- \gamma \left( \dfrac{\partial \phi}{\partial y} + \dfrac{\partial A_y}{\partial (ct)} \right) - \gamma \beta \left( \dfrac{\partial A_y}{\partial x} - \dfrac{\partial A_x}{\partial y} \right)##

(##\beta## and ##\gamma=(1 - \beta^2)^{-1/2}## are constants).

I didn't know what to do with those ##\partial (\textrm{foo + bar})## objects, but I forged ahead with the kind of "algebra" shown above in my OP (as if they were ordinary differentials), and I seem to have succeeded. I just don't have experience treating "partial differentials" this way, so I don't know if what I did was valid.
 
gleem said:
If a,c,f, and h are independent variables and y does not depend and a and c and x does not depend on f and h then x is not a function of y.

So, in fact there are only two new independent variables x and t not four. Have you tried the chain rule yet?
 
  • Like
Likes SiennaTheGr8
Yes, thank you, I think I understand now:

##\dfrac{\partial A_y}{\partial ct^\prime (x, ct)} = \dfrac{\partial A_y}{\partial ct} \dfrac{\partial}{\partial ct^\prime} (\gamma ct^\prime + \gamma \beta x^\prime) + \dfrac{\partial A_y}{\partial x} \dfrac{\partial}{\partial ct^\prime} (\gamma x^\prime + \gamma \beta ct^\prime) = \gamma \dfrac{\partial A_y}{\partial ct} + \gamma \beta \dfrac{\partial A_y}{\partial x}##

Been a while since I've worked with partials...
 

Similar threads

  • · Replies 16 ·
Replies
16
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K