Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Marilyn vos Savant: -1x-1=+1, instead of -1

  1. Sep 12, 2013 #1
    Marilyn vos Savant, who claims to be in the Guinness Hall of Fame for “World’s Highest IQ.”,
    has written the book The World’s Most Famous Math Problem, and here is a direct quote from
    the book, page 61:

    The square root of +1 is a real number because +1 × +1 = +1; however, the square root of -1 is imaginary because -1 times -1 would also equal +1, instead of -1. This appears to be a contradiction. Yet it is accepted, and imaginary numbers are used routinely. But how can we justify using them to prove a contradiction?

    Marilyn's book was reviewed by American Mathematical Monthly 102 (1995) 470-473, and the above quote was given as an example of author's misunderstanding and mangling the notion of proof by contradiction. Wikipedia writes that Marilyn is said to misunderstand imaginary numbers.

    It seems to me that she is not taken seriously because she is not a mathematician but rather
    a layperson. I see also the same contradiction, why should i^2 = -1 if a negative number times a
    negative numbers is equal to a positive number? Are the mathematicians themselves making
    a mistake and a contradiction? Or perhaps it is alright to break the rules if you can do
    it so cleverly that no-one, especially the laymen, notices it. The best way is to
    define new rules that apply to the contradiction and call the new numbers imaginary numbers
    which obey their own rules. That way a negative number times a negative number can be made equal to a negative number, so -1 times -1 would be equal to -1 according to the new rules,
    because these are just the imaginary numbers obeying the new rules. Maybe it does not matter
    that these rules may violate the old rules, who cares?
     
  2. jcsd
  3. Sep 12, 2013 #2

    Office_Shredder

    User Avatar
    Staff Emeritus
    Science Advisor
    Gold Member

    I is not a negative number, so there's no contradiction
     
  4. Sep 12, 2013 #3
    There is no contradiction.

    Say we want to solve the equation X * X + 1 = 0. In the 1800s we would use quaternions, which do work but are cumbersome.
    http://en.wikipedia.org/wiki/Quaternion#Square_roots_of_.E2.88.921

    'Imaginary numbers' are just another way of solving the equation, not more or less. Solving an equation using 'Imaginary numbers' can also be done using 'quaternions', its just more cumbersome.

    You need to think in terms of what problems people were trying to solve in the 1800s, and how they solved them.
     
  5. Sep 12, 2013 #4
    If i is not a negative number, but a positive one ( also the same as +i), then -i is a negative number, and

    (-i)x(-i) = (+i)x(+i) = i^2 = -1

    so we have the result: a negative number times a negative number equals a negative number.
    And yes, there appears to be a violation of the old rules.
     
  6. Sep 12, 2013 #5

    chiro

    User Avatar
    Science Advisor

    The imaginary numbers are required to complete algebra.

    Gauss did the necessary work to fill in the blanks with his various fundamental theorems of algebra, and basically unified a lot of the work that previous mathematicians like Cardano were doing but at a much more abstract level.

    The imaginary numbers link all forms of geometry (negative, zero, positive curvature), periodicity/frequency/wave-stuff and exponential growth, and give us completely new insights to algebra, analysis, and geometry.

    Periodicity is very critical: one can look at the complex numbers and look at how periodicity in many contexts is applied. At one level you get normal complex, at another the quaternions, then the octonions and so on. With Grassmanns work you get interior, exterior, and geometric products which all help generalize geometric algebras in terms of length, and angle.

    You also generalize a lot of other functions like logs, exponentials, trig functions and link all the hyperbolic functions to the non-hyperbolic ones.

    Periodicity though is really the big thing since it is a basic analytic foot-print of nature. Our universe is periodic as is our languages and even our number systems. Our base 10 number system has a periodic nature to it where each number goes from 0 to 9 and then repeats back again in particular sequence. Our planets, atoms, galaxies, and other physical entities also have periodic properties to them and things interact in a periodic manner.

    We model everything with periodic models, and eventually we are going to get complex numbers in there somewhere that represent this.

    There are many more, but the above are the more obvious ones.
     
  7. Sep 12, 2013 #6
    i is neither negative nor posititve, and the same applies to -i; these terms only have meanings for real numbers similar to the way "odd" and "even" only have meanings for integers, not numbers like 1.5.

    Well it is true that -i2 = -1, but your "proof" is not convincing. You need to write (-i)x(-i) = ((-1)x(i))x((-1)x(i)) = ((-1)x(-1))x((i)x(i))= (1)x(-1) = -1.

    The rules that apply to multiplication of complex numbers (including imaginary numbers like i) are consistent with (i.e. do not violate) the rules that apply to multiplication of real numbers. -1 x -1 = 1 is still true.
     
  8. Sep 12, 2013 #7

    Office_Shredder

    User Avatar
    Staff Emeritus
    Science Advisor
    Gold Member

    Ally, what you have in fact proven is that it is impossible to put an algebraic total ordering on the complex numbers (i.e. pick a set of numbers and declare them to be positive and expect them to satisfy the things we expect positive and negative numbers to satisfy)
     
  9. Sep 12, 2013 #8

    pwsnafu

    User Avatar
    Science Advisor

    Zero is neither positive nor negative. Why do you think i is must be positive or negative?
     
  10. Sep 12, 2013 #9
    There is the result (+i)^2 = (-i)^2 = ((-1)x(-1))x((i)x(i)) = (i)x(i) = (1)x(-1) = -1.
    → i= 1 and i= -1.

    It could be that there are the values i=1 and i=-1 besides the usual i=√-1,
    although this may sound a strange idea. At least the usual multiplication rules are then
    valid, and the original problem of multiplying two negative numbers and getting a negative
    result is solved.
     
  11. Sep 12, 2013 #10

    D H

    User Avatar
    Staff Emeritus
    Science Advisor

    That's backwards. Imaginary numbers and complex numbers predate quaternions by quite a bit. Hamilton specifically invented the quaternions as an extension to the complex numbers.


    Of course. The same happens with negative numbers. It is no longer valid to use √(x2)=x when one allows x to be negative.


    Note that the labels negative and imaginary (and also irrational) are rather pejorative. This is no accident. It took mathematicians a while to admit that expressions such as x+1=0 and x2+1=0 were worthy of anything but derision.
     
  12. Sep 12, 2013 #11

    D H

    User Avatar
    Staff Emeritus
    Science Advisor

    With regard to "intelligence", I'd much rather be half as "intelligent" as was Richard Feynman with his supposedly mundane IQ of 125 than equally as "intelligent" as is Ms. Vos Savant with her supposedly superhuman IQ of 228. IQ tests do measure something, but the only thing that people agree on is that it they test the ability to take IQ tests.
     
    Last edited: Sep 12, 2013
  13. Sep 12, 2013 #12
    shows just because an obnoxious person has a high IQ doesn't make them good at math.

    i remember she tried to discredit Andrew Wiles Last Theorem Solution using her outragous logic.

    Ignoring her is the best solution.
     
  14. Sep 12, 2013 #13

    pwsnafu

    User Avatar
    Science Advisor

    Heck, we see this even today with paradoxical sets.
     
  15. Sep 12, 2013 #14

    D H

    User Avatar
    Staff Emeritus
    Science Advisor

    Paradoxically, the axiom of choice is obviously true, the well-ordering principle obviously false, and who can tell about Zorn's lemma?
     
  16. Sep 14, 2013 #15
    I did a little research about the possibility of i being multivalued, because above is
    a formula where we can calculate that i=+1 and i=-1 besides the well known i=√-1 .
    This means that +1 = -1, and we seem to have made a mathematical fallacy if
    we trust Wikipedia which says that:

    +1=√1 =[itex]\sqrt{}(-1)\dot{}(-1)[/itex] =√(-1)[itex]\dot{}[/itex]√(-1) = i [itex]\dot{}[/itex] i = -1

    according to Wikipedia this is an invalid proof and the fallacy is that the rule [itex]\sqrt{}x\dot{}y[/itex] =√x [itex]\dot{}[/itex] √y is generally valid only if both x and y are positive, which is not the case here.

    However, the credibility of Wikipedia can be questioned because there are other sources who claim the opposite, for example Wolfram MathWorld says
    that " +1 is always an n'th root of unity, but -1 is such a root only if n is even " , direct quote.
    We have found a proof that 1 has a second root of unity equal to -1:
    √1 = -1
    another second root of unity is +1 but it is obvious that √1 = 1.

    To me it seems strange if no-one thought about i being multivalued, it seems to be the only
    way to solve the problem how a negative number times a negative number equal to a negative
    number.
     
  17. Sep 14, 2013 #16

    arildno

    User Avatar
    Science Advisor
    Homework Helper
    Gold Member
    Dearly Missed

    AllyScientific:
    This is a non-issue, based on your, and von Savant's severe misunderstanding of what complex numbers are, and what it means to "multiply" complex numbers, relative to "multiplying" what we call real numbers.

    If we look at how Hamilton defined "complex numbers", each element (i.e, complex number) is a pair of real numbers (a,b), where we assign a specific "multiplication rule" for two complex numbers (a,b) and (c,d):

    (a,b)*(c,d)=(ac-bd,ad+bd), where ac, bd and so on are standard "multiplication between reals".

    Note that in the case a=c=0, b=d=1, we have (0,1)*(0,1)=(-1,0), whereas for b=d=0, we have (a,0)*(c,0)=(ac,0)

    The latter case shows how we may regard "multiplication of real numbers" as subsumed into "multiplication of complex numbers" (we may identify the COMPLEX number (a,0) with the REAL number "a"), and the first case shows how i=(0,1) fulfills the identy i^2=-1, where "^" is multiplication between complex numbers, and "-1" is short hand identification of the complex number (-1,0) with the real number -1.
     
  18. Sep 14, 2013 #17

    D H

    User Avatar
    Staff Emeritus
    Science Advisor

    That is correct.

    Any mathematical system that admits even one stinkin' contradiction is an invalid system. Armed with that single contradiction, one can simultaneously prove and disprove every statement made by that system. The system either has to be fixed somehow so that it no longer admits that contradiction or the entire system has to be tossed.

    The complex numbers have been around for quite a while now. There are no contradictions with the complex numbers. That proof is invalid.

    Many of those "standard rules" for exponentiation aren't so standard at all. They apply to the positive numbers only. For example, consider x=x2/2=(x2)1/2. In short, x=√(x2). This is not true even for the negative numbers, let alone complex numbers. We've helped a vast number of students who have made this basic error somewhere in their work.


    Huh? How do you see this as being a claim of the opposite?
     
  19. Sep 14, 2013 #18

    arildno

    User Avatar
    Science Advisor
    Homework Helper
    Gold Member
    Dearly Missed

    "Armed with that single contradiction, one can simultaneously prove and disprove every statement made by that system."

    Really?

    Suppose a system contains axioms A, B, C and not-A

    Proofs solely dependent upon axioms B and C should not be affected in their validity due to the inherent system contradiction in that both A and not-A have been accepted as true.
     
  20. Sep 14, 2013 #19

    D H

    User Avatar
    Staff Emeritus
    Science Advisor

    Really.

    principle_of_explosion.png
     
  21. Sep 14, 2013 #20

    It seems to me that you did not even read what I said. I have presented you a proof
    that:
    √1 = -1
    and the proof is based on the concept of the roots of unity. Do your homework and learn
    what are the roots of unity. You will find that a second root of unity means the same as
    the square root of 1. And it has two values +1 and -1, on the complex plane these are
    lying on the real axis, on opposite sides of the unit circle described by the Euler's formula
    e^i[itex]\alpha[/itex] = cos[itex]\alpha[/itex] + i [itex]\dot{}[/itex]sin[itex]\alpha[/itex]

    If you continue to trust Wikipedia as a source of scientific information, that is your choice.
    I have proved that Wikipedia is not credible source to prove that √1 = -1 is a mathematical
    fallacy.
     
    Last edited by a moderator: Sep 14, 2013
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook