Marty's question at Yahoo Answers regarding minimizing a cost function

Click For Summary

Discussion Overview

The discussion revolves around a cost function defined as C(x) = 40/x + x/10, with the goal of finding the value of x, representing distance in meters between poles, that minimizes this cost. The conversation includes mathematical reasoning and attempts to derive critical values using both pre-calculus and calculus methods.

Discussion Character

  • Mathematical reasoning
  • Technical explanation

Main Points Raised

  • One participant notes that x must be non-negative (0 ≤ x) since it represents a distance.
  • Another participant suggests that the cost function is minimized when x is approximately 20, based on graphical analysis.
  • A pre-calculus method is presented to find the critical value of x, leading to the conclusion that x = 20 is a global minimum.
  • Calculus is employed to derive the first derivative of the cost function, leading to the same critical value of x = 20, with a second derivative test confirming concavity at this point.

Areas of Agreement / Disagreement

Participants generally agree on the critical value of x being 20 for minimizing the cost function, but the discussion does not explore any alternative viewpoints or unresolved disagreements.

Contextual Notes

The discussion does not address any limitations or assumptions in the mathematical steps taken, nor does it explore the implications of the cost function's behavior as x approaches zero or infinity.

MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the question:

Help with cost functions?


Hi there,

Got this cost function question where C(x) = 40/x + x/10
I need to find x where x=distance in meters between the poles that will minimize the cost.

Thanks for any help/hints!

I have posted a link there to this topic so the OP can see my work.

edit: Unfortunately, the OP deleted the question before I had a chance to post my response there.
 
Physics news on Phys.org
Hello Marty,

I would first observe that since $x$ represents a distance, we will require:

$$0\le x$$

Next, let's look at a graph of the function where $x\le x\le50$:

View attachment 1439

As we can see, the cost function is minimized when:

$$x\approx20$$

Now, let's find this critical value for $x$.

i) First we will use a pre-calculus method:

$$C=\frac{x^2+400}{10x}$$

$$x^2-10Cx+400=0$$

The axis of symmetry, where the vertex of the quadratic is located, is given by:

$$x=-\frac{-10C}{2(1)}=5C$$

Substituting this into the quadratic, we find:

$$(5C)^2-10C(5C)+400=0$$

(5C)^2=20^2

Taking the positive root, we find:

$$5C=20$$

And this is our critical value. Since the cost function grows unbounded as $x$ approaches zero and as $x$ approaches infinity, we may conclude this is a global minimum on the applicable domain.

ii) Next, let's apply the calculus:

$$ C(x)=\frac{40}{x}+\frac{x}{10}=40x^{-1}+\frac{1}{10}x$$

Now, in order to find the extrema, we need to compute the first derivative, and equate it to zero, and solve for $x$ to get the critical value(s).

$$C'(x)=-40x^{-2}+\frac{1}{10}=\frac{x^2-400}{10x^2}=0$$

We know the cost function grows unbounded as $x$ approaches zero, and so we are interesting only in the critical values from the numerator:

$$x^2-400=0$$

$$x^2=20^2$$

Taking the positive root, we obtain:

$$x=20$$

Using the second derivative test, we find:

$$C''(x)=80x^{-3}$$

Now since $$C''(20)>0$$ we can conclude the cost function is concave up at this critical value, and so we know we have found the global minimum.
 

Attachments

  • marty.jpg
    marty.jpg
    5.4 KB · Views: 99
MarkFL said:
edit: Unfortunately, the OP deleted the question before I had a chance to post my response there.

Bummer :( Thank you for posting this anyway and for all of the questions you bring in!
 
Jameson said:
Bummer :( Thank you for posting this anyway and for all of the questions you bring in!

Yeah, I was mildly annoyed at first, but I just decided to do another one. (Rofl)
 

Similar threads

Replies
1
Views
1K
Replies
1
Views
2K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
4K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
Replies
1
Views
4K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
4K