I Mass Dimension of Fields (Momentum space)

  • I
  • Thread starter Thread starter thatboi
  • Start date Start date
thatboi
Messages
130
Reaction score
20
Hi all,
We know from requiring the action be invariant that the mass-dimension of a scalar field ##\phi## is ##\frac{d-2}{2}## where ##d## is the space-time dimension. But what is the mass-dimension of ##\phi(p)##? I ask because free-theory 2-pt correlation function (in Euclidean space) is written as ##\langle\phi(p)\phi(q)\rangle = (2\pi)^{d}\delta^{d}(p+q)\frac{1}{p^{2}+m^{2}}##. The dirac delta seems to contribute a mass dimension ##-d## and then the fractional component contributes another mass-dimension of ##-2##? I'm not sure if this makes sense.

Thanks.
 
Physics news on Phys.org
Indeed, and therefore …

Another way of deriving it is to look at the action expressed in the momentum variables or just the definition of ##\phi(p)## in terms of ##\phi(x)##.
 
  • Like
Likes topsquark and vanhees71
Orodruin said:
Indeed, and therefore …

Another way of deriving it is to look at the action expressed in the momentum variables or just the definition of ##\phi(p)## in terms of ##\phi(x)##.
Ah, so the mass dimension is ##\frac{-d-2}{2}##. The fourier transform is indeed significantly simpler to see this.
 
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
Is it possible, and fruitful, to use certain conceptual and technical tools from effective field theory (coarse-graining/integrating-out, power-counting, matching, RG) to think about the relationship between the fundamental (quantum) and the emergent (classical), both to account for the quasi-autonomy of the classical level and to quantify residual quantum corrections? By “emergent,” I mean the following: after integrating out fast/irrelevant quantum degrees of freedom (high-energy modes...
Back
Top