I Mass Dimension of Fields (Momentum space)

  • I
  • Thread starter Thread starter thatboi
  • Start date Start date
thatboi
Messages
130
Reaction score
20
Hi all,
We know from requiring the action be invariant that the mass-dimension of a scalar field ##\phi## is ##\frac{d-2}{2}## where ##d## is the space-time dimension. But what is the mass-dimension of ##\phi(p)##? I ask because free-theory 2-pt correlation function (in Euclidean space) is written as ##\langle\phi(p)\phi(q)\rangle = (2\pi)^{d}\delta^{d}(p+q)\frac{1}{p^{2}+m^{2}}##. The dirac delta seems to contribute a mass dimension ##-d## and then the fractional component contributes another mass-dimension of ##-2##? I'm not sure if this makes sense.

Thanks.
 
Physics news on Phys.org
Indeed, and therefore …

Another way of deriving it is to look at the action expressed in the momentum variables or just the definition of ##\phi(p)## in terms of ##\phi(x)##.
 
  • Like
Likes topsquark and vanhees71
Orodruin said:
Indeed, and therefore …

Another way of deriving it is to look at the action expressed in the momentum variables or just the definition of ##\phi(p)## in terms of ##\phi(x)##.
Ah, so the mass dimension is ##\frac{-d-2}{2}##. The fourier transform is indeed significantly simpler to see this.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
If we release an electron around a positively charged sphere, the initial state of electron is a linear combination of Hydrogen-like states. According to quantum mechanics, evolution of time would not change this initial state because the potential is time independent. However, classically we expect the electron to collide with the sphere. So, it seems that the quantum and classics predict different behaviours!
Back
Top