Hi,(adsbygoogle = window.adsbygoogle || []).push({});

If I have a Lagrangian that looks like [tex] L=-\frac{1}{2} \partial^a{\phi}\partial_a{\phi}-\frac{1}{2} \mu \phi^2 -\frac{1}{24}\lambda \phi^4 [/tex].

Where [tex]\lambda>0 [/tex]

Then how do I figure out the mass for small fluctuations about [tex] \phi=0 [/tex] ?

I don't think I really understand what it means for some parameter to represent the mass. I mean without the phi^4 term, it would just lead to KG equation and obviously there [tex] \mu [/tex] represents the mass when you find the dispersion relation.

Should I just therefore find the equations of motion, then plug in some superposition type solution to find out the dispersion relation, and thus find a term that I would normally call the mass in a relation of the form [tex] E^2=P^2+m^2 [/tex]? or is there something else to this?

I'm not really sure how to incorporate the phi=0 expansion into this, I was originally thinking just Taylor expand but then I would have expanded about [tex] \phi(0,\vec(0)) [/tex], as oppose to the trivial [tex] \phi=0 [/tex] solution.

Thanks for any help

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Mass of field for small fluctuations

**Physics Forums | Science Articles, Homework Help, Discussion**