Mass swinging in a horizontal circle on 2 strings

Click For Summary
SUMMARY

The discussion centers on the dynamics of a mass swinging in a horizontal circle supported by two strings, specifically analyzing the tension in the lower string (T2). The participant concludes that T2 can be negative, indicating it does not support the mass against gravity but rather adds to the tension in the upper string (T1). The equations governing the system, including T1 = 22.0N, m = 0.500 kg, and θ = 30.0°, lead to a calculated positive tension for T2 of 12.2N. The implications of cutting the lower string are also explored, revealing that T2 cannot be negative in a physical context.

PREREQUISITES
  • Understanding of Newton's laws of motion
  • Familiarity with tension forces in circular motion
  • Knowledge of vector components in physics
  • Ability to solve algebraic equations related to forces
NEXT STEPS
  • Explore the concept of centripetal force in circular motion
  • Study the effects of tension in multi-string systems
  • Learn about angular momentum conservation in dynamic systems
  • Investigate the implications of cutting forces in mechanical systems
USEFUL FOR

Physics students, mechanical engineers, and anyone interested in understanding the dynamics of tension in circular motion systems.

applesoranges
Messages
8
Reaction score
0
Homework Statement
The ball is spinning in horizontal plane attached with 2 massless strings to a rotating stick,
as shown in the picture. Find tension of the lower cord using the given value of tension in the upper cord and the mass of the ball. The length parameters are also given, so the angles can be calculated.
I don't want to copy the problem from the assignment in order not to violate any policies of my institution.
Relevant Equations
Fg=m*g, a=v^2/r
photo_2021-10-15_15-43-39.jpg

I have already solved this problem, just would like to double check something with you conceptually. I've got a negative result for the tension in the lower cord. Intuitively I think it is right, because the lower cord does not support the ball in its opposing the force of gravity. It actually adds up to the tension T1 ought to have. Please guide me in the understanding this problem. Also, for the summation of forces in the y-direction, if T2 is negative, the vector of T2x is in the same direction as m*g, that supports my result of T2 being negative. Am I on the right track?
 
Physics news on Phys.org
If the contraption were spinning 10x as fast, would there still be no tension on T2 ?
 
hmmm27 said:
If the contraption were spinning 10x as fast, would there still be no tension on T2 ?
Fair enough! I guess I'll have to model a situation where v is the way that T2 is 0 and see how it goes...
 
applesoranges said:
I don't want to copy the problem from the assignment in order not to violate any policies of my institution.
Ok, but you could post a purely algebraic solution which we would be able to check.
 
haruspex said:
Ok, but you could post a purely algebraic solution which we would be able to check.
What throws me off in the summation of forces in y-direction is T2y vector being opposite in sign to T1y. I get a negative number for T2y... I'm trying to comprehend what to make of it. I'll try to work on it more when I come back after my night shift.
 
applesoranges said:
I get a negative number for T2y
If you define up as positive for all vertical vectors, of course the Y component of T2 will be negative.
I see nothing stopping you from posting your equations.
 
haruspex said:
Ok, but you could post a purely algebraic solution which we would be able to check.
What throws me off in the summation of forces in y-direction is T2y vector being opposite in sign to T1y. I get a negative number for T2y... I'm trying to comprehend what to make of it. I'll try to work on it more when I come back after my night shift.
 
Given:
T1=22.0N
m=0.500 kg
##\theta = 30.0^{\circ}##
Find:
T2 = ?
What I have so far:
##\sum_{}^{}F_{x}^{}: T_{1}cos\theta +T_{2}cos\theta =ma_{c}##
##\sum_{}^{}F_{y}^{}: T_{1}sin\theta =T_{2}sin\theta + mg##
##T_{2}=\frac{T_{1}sin\theta-mg}{sin\theta }##

The result for T2 is a positive number
T2=12.2N
Question:
The big question is that I'm trying to visualize this situation and conceptualize what the positive value for T2 means. Since it is a positive vector pointing in the direction of force of gravity, does that mean that the tension is actually cancelling T1 in the y-direction, meaning that it is pulling on the ball down?
 
applesoranges said:
Given:
T1=22.0N
m=0.500 kg
##\theta = 30.0^{\circ}##
Find:
T2 = ?
What I have so far:
##\sum_{}^{}F_{x}^{}: T_{1}cos\theta +T_{2}cos\theta =ma_{c}##
##\sum_{}^{}F_{y}^{}: T_{1}sin\theta =T_{2}sin\theta + mg##
##T_{2}=\frac{T_{1}sin\theta-mg}{sin\theta }##

The result for T2 is a positive number
T2=12.2N
Question:
The big question is that I'm trying to visualize this situation and conceptualize what the positive value for T2 means. Since it is a positive vector pointing in the direction of force of gravity, does that mean that the tension is actually cancelling T1 in the y-direction, meaning that it is pulling on the ball down?
Yes, the tension in the lower string exerts a downward force on the mass. Is that a problem?
What would happen if the lower string were cut?
 
  • Like
Likes   Reactions: applesoranges
  • #10
haruspex said:
Is that a problem?
Not a all, just a brain freeze.
haruspex said:
What would happen if the lower string were cut?
Good question, because now I understand that T2 can't really be negative. I mean, algebraically you could make T2 in
##T_{2}=\frac{T_{1}sin\theta-mg}{sin\theta }##
less than zero. But that situation can't physically exist, right?
When the string is cut and T2=0
##T_{1}sin\theta=mg##
 
  • #11
applesoranges said:
When the string is cut and T2=0
##T_{1}sin\theta=mg##
No, I meant suppose it is spinning steadily with a nonzero tension, then the string is cut. What will happen to the mass and the other string?
 
  • #12
haruspex said:
No, I meant suppose it is spinning steadily with a nonzero tension, then the string is cut. What will happen to the mass and the other string?
The angle between T1 and horizontal will have to increase to make sure mac equals T1x.
 
  • #13
applesoranges said:
The angle between T1 and horizontal will have to increase to make sure mac equals T1x.
Since T2 was pulling down on the mass, which way would you expect the mass to move when it is cut?
 
  • #14
haruspex said:
Since T2 was pulling down on the mass, which way would you expect the mass to move when it is cut?
Upwards.
 
  • #15
applesoranges said:
Upwards.
Right.
After oscillating a bit, it would settle at a new equilibrium.
It's not obvious what that does to the tension in the upper string. By conservation of angular momentum, the rotation rate would be lower, and it would no longer have to fight the downward pull of the lower string. On the other hand, it would have to provide the whole centripetal force.
 
  • Like
Likes   Reactions: applesoranges

Similar threads

  • · Replies 29 ·
Replies
29
Views
2K
Replies
7
Views
2K
  • · Replies 16 ·
Replies
16
Views
2K
Replies
19
Views
3K
  • · Replies 9 ·
Replies
9
Views
4K
Replies
13
Views
2K
Replies
2
Views
1K
  • · Replies 7 ·
Replies
7
Views
9K
  • · Replies 9 ·
Replies
9
Views
5K
  • · Replies 4 ·
Replies
4
Views
4K