Mathematical Induction 4+11+14+21+....+(5n+(-1)^n

Click For Summary
SUMMARY

The forum discussion focuses on proving the mathematical induction statement for the series \( \sum_{k=1}^{n}(5k+(-1)^k) \). The user successfully verified the base case for \( n=1 \) and established the induction hypothesis \( P_n \) as \( \frac{1}{2}(5n(n+1)+(-1)^n-1) \). The user then demonstrated the induction step by adding the term \( 5(n+1)+(-1)^{n+1} \) and derived the formula for \( P_{n+1} \), confirming the validity of the induction proof.

PREREQUISITES
  • Understanding of mathematical induction
  • Familiarity with algebraic manipulation
  • Knowledge of summation notation
  • Basic understanding of sequences and series
NEXT STEPS
  • Study the principles of mathematical induction in detail
  • Practice algebraic manipulation techniques for proofs
  • Explore more complex series and their summation formulas
  • Learn about other proof techniques in mathematics, such as contradiction and contrapositive
USEFUL FOR

Students and educators in mathematics, particularly those focusing on algebra and proof techniques, as well as anyone interested in enhancing their understanding of mathematical induction.

Yankel
Messages
390
Reaction score
0
Dear all

I am trying to prove by induction the following:

View attachment 8712

I checked it for n=1, it is valid. Then I assume it is correct for some k, and wish to prove it for k+1, got stuck with the algebra. Can you kindly assist ?

Thank you.
 

Attachments

  • induction.PNG
    induction.PNG
    1.5 KB · Views: 137
Mathematics news on Phys.org
I would state the induction hypothesis \(P_n\):

$$\sum_{k=1}^{n}\left(5k+(-1)^k\right)=\frac{1}{2}\left(5n(n+1)+(-1)^n-1\right)$$

As the induction step, I would add $$5(n+1)+(-1)^{n+1}$$ to both sides:

$$\sum_{k=1}^{n}\left(5k+(-1)^k\right)+5(n+1)+(-1)^{n+1}=\frac{1}{2}\left(5n(n+1)+(-1)^n-1\right)+5(n+1)+(-1)^{n+1}$$

Incorporate the new term:

$$\sum_{k=1}^{n+1}\left(5k+(-1)^k\right)=\frac{1}{2}\left(5n(n+1)+(-1)^n-1+2\cdot5(n+1)+2\cdot(-1)^{n+1}\right)$$

$$\sum_{k=1}^{n+1}\left(5k+(-1)^k\right)=\frac{1}{2}\left(5(n+1)(n+2)+(-1)^n(1+2(-1))-1\right)$$

$$\sum_{k=1}^{n+1}\left(5k+(-1)^k\right)=\frac{1}{2}\left(5(n+1)((n+1)+1)+(-1)^{n+1}-1\right)$$

We have derived \(P_{n+1}\) from \(P_n\) thereby completing the proof by induction.
 

Similar threads

  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 26 ·
Replies
26
Views
5K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K