planauts
- 86
- 0
Homework Statement
Find the values of a and b such that the equations:
3x + ay = 2 and -6x + 4y = b
have i) an infinite set of solutions ii) no solutions
The Attempt at a Solution
\begin{pmatrix}<br /> 3 & a \\<br /> -6 & 4<br /> \end{pmatrix} * \begin{pmatrix}<br /> x\\ <br /> y<br /> \end{pmatrix}<br /> = \begin{pmatrix}<br /> 2\\ <br /> b<br /> \end{pmatrix}
<br /> \begin{pmatrix}<br /> x\\ <br /> y<br /> \end{pmatrix}<br /> = <br /> \begin{pmatrix}<br /> 3 & a \\<br /> -6 & 4<br /> \end{pmatrix}^{-1} * <br /> \begin{pmatrix}<br /> 2\\ <br /> b<br /> \end{pmatrix}<br /><br /> \begin{pmatrix}<br /> x\\ <br /> y<br /> \end{pmatrix}<br /> = <br /> \tfrac{1}{12+6a} *<br /> <br /> \begin{pmatrix}<br /> 4 & -a \\<br /> 6 & 3<br /> \end{pmatrix} * <br /> \begin{pmatrix}<br /> 2\\ <br /> b<br /> \end{pmatrix}<br /> <br />
I think that when the matrix is singular, then it does not have ONE solution (infinite OR no solution). So when a = -2 then it has infinite OR no solution. But what about b, how do I figure out the value for b?
Thanks