Solve this problem that involves parametric equations

In summary: QPK)=\dfrac{\overrightarrow{QP}\cdot\overrightarrow{KP}}{\left|{QP}\right|\,\left|{KP}\right|}####\displaystyle \cos(\angle SPK)=\dfrac{\overrightarrow{QP}\cdot\overrightarrow{SPK}}{\left|{QP}\right|\,\left|{SPK}\right|}##angle ##QPT=SPT##.
  • #1
chwala
Gold Member
2,650
351
Homework Statement
##P## is a point on the parabola given by ##x=at^2, y=2at##, where ##a## is a constant. Let ##S## be the point ##(a,0)##, ##Q## be the point ##(-a,2at)##and ##T## be the point where the tangent at ##P## to the parabola crosses the axis of symmetry of the parabola.

(a) Show that ##SP=PQ=QT=ST=at^2+a##

(b) Prove that angle ##QPT## is equal to angle ##SPT##

(c) If ##PM##is parallel to the axis of the parabola, with ##M## to the right of ##P##and ##PN##is the normal to the parabola at ##P##, show that angle ##MPN## is equal to angle ##NPS##
Relevant Equations
Parametric equations
My take;
Part (a);

##\dfrac{dy}{dx}=\dfrac{1}{t}##

therefore,

##y-2at=\dfrac{1}{t}(x-at^2)##

##ty-2at^2=x-at^2##

##ty=x+at^2## implying that ##T## has co-ordinates ##(-at^2,0)##.

##SP=\sqrt{(a-at^2)^2+(0-2at)^2}##

##SP=\sqrt{4a^2t^2-2a^2t^2+a^2t^4+a^2}##

##SP=\sqrt{a^2t^4+2a^2t^2+a^2}##

##SP=\sqrt{a^2t^4+a^2t^2+a^2t^2+a^2}##

##SP=\sqrt{(at^2+a)^2}##

##SP=at^2+a##

also;

##PQ=\sqrt{(-a-at^2)^2+(2at-2at)^2}##

##PQ=\sqrt{(-a-at^2)^2}=\sqrt{a^2t^4+2a^2t^2+a^2}=at^2+a##

##QT=\sqrt{(-at^2+a)^2+(2at)^2}=at^2+a##

and

##ST=\sqrt{(-at^2-a)^2}=at^2+a##

thus shown.

For part (b);

Let the midpoint of ##QS## be denoted by ##K=\dfrac{-a+a}{2},\dfrac{0+2at}{2} =(0,at)##

##KP## is the perpendicular bisector to sides ##QP## and ##SP## respectively, we can use pythagoras theorem to show that
##PK^2+KS^2=PS^2## and ##PK^2+KQ^2=QP^2## this would imply that angle ##QPT=SPT##.

that is,

##PK=
\begin{pmatrix}
0 & \\
at & \\
\end{pmatrix}-
\begin{pmatrix}
at^2 & \\
2at & \\
\end{pmatrix}=
\begin{pmatrix}
-at^2 & \\
-at & \\
\end{pmatrix}
##

##\sqrt{PK^2+KS^2}##
##\sqrt{
\begin{pmatrix}
-at^2 & \\
-at & \\
\end{pmatrix}^2+
\begin{pmatrix}
a & \\
-at & \\
\end{pmatrix}^2}=PS
##

and

##\sqrt{PK^2+KQ^2}=##
##\sqrt{
\begin{pmatrix}
-at^2 & \\
-at& \\
\end{pmatrix}^2+
\begin{pmatrix}
-a & \\
at & \\
\end{pmatrix}^2}=QP
##
since ##PS=QP## and ##PK## is the perpendicular bisector to angle ##QPS## then it follows that angle ##QPT=SPT##.
 
Last edited:
Physics news on Phys.org
  • #2
...i should be able to use cos with vectors for part (b)...

Alternatively,

##QP=(at^2+a)i, KP=at^2i+atj, SP=(at^2-a)i+2atj##

Angle ##QPK=\dfrac{a^2t^4+a^2t^2}{at^2+a\sqrt{a^2t^4+a^2t^2}}=\dfrac{a^2t^2(t^2+1)}{(at)a(t^2+1)\sqrt{t^2+1}}=\dfrac{t}{\sqrt{t^2+1}}##

Angle ##SPK=\dfrac{a^2t^4-a^2t^2+2a^2t^2}{\sqrt{(at^2-a)(at^2-a)+4a^2t^2)⋅}\sqrt{a^2t^4+a^2t^2}}##

##=\dfrac{a^2t^4+a^2t^2}{at^2+a\sqrt{(a^2t^2(t^2+1)}}=\dfrac{a^2t^2(t^2+1)}{(at)a(t^2+1)\sqrt{t^2+1}}=\dfrac{t}{\sqrt{t^2+1}}##

Therefore angle ##QPK=SPK⇒QPT=SPT##

cheers!!
 
Last edited:
  • #3
chwala said:
...i should be able to use cos with vectors for part (b)...

Alternatively,

##QP=(at^2+a)i, KP=at^2i+atj, SP=(at^2-a)i+2atj##

Angle ##QPK=\dfrac{a^2t^4+a^2t^2}{at^2+a\sqrt{a^2t^4+a^2t^2}}=\dfrac{a^2t^2(t^2+1)}{(at)a(t^2+1)\sqrt{t^2+1}}=\dfrac{t}{\sqrt{t^2+1}}##
. . .

cheers!!
It looks like you are using the scalar product to find the cosines of the relevant angles. Initially when I read that first line, I thought you might be using the Law of Cosines.

In other words, what you are doing is: ##\displaystyle \ \ \cos(\angle QPK)= \dfrac{\overrightarrow{QP}\cdot\overrightarrow{KP}}{\left|{QP}\right|\,\left|{KP}\right|}##

You left the ##\cos## out of your expressions.
Also, in the first denominator, parentheses were missing from ##(at^2+a)## .

Now for some LaTeX:
Use \hat to get the "^" above i, j, k, etc. Also use \imath and \jmath to get rid of the dot above these letters.

Use \hat \imath to get ##\displaystyle \hat{\imath}##.

\angle gives the angle symbol. ##\displaystyle \angle QPK##
 
Last edited:
  • Like
Likes jim mcnamara, chwala and Mark44

1. What are parametric equations?

Parametric equations are a set of equations that express the coordinates of a point in terms of one or more parameters. These equations are often used to describe a curve or surface in mathematics and physics.

2. How are parametric equations used to solve problems?

Parametric equations allow us to break down a complex problem into smaller, more manageable parts. By using parameters, we can change the values of the equations and analyze how the resulting curve or surface changes. This helps us to better understand the problem and find a solution.

3. Can you provide an example of a problem that can be solved using parametric equations?

One example is finding the trajectory of a projectile. By using parametric equations for position, velocity, and acceleration, we can determine the path of the projectile and predict where it will land.

4. What are some common techniques for solving problems involving parametric equations?

Some common techniques include eliminating parameters, finding the derivatives of the equations, and using algebraic manipulation to simplify the equations. Graphing the equations can also provide insight into the problem and possible solutions.

5. Are there any limitations to using parametric equations to solve problems?

Parametric equations may not always provide an exact solution to a problem. They also require a good understanding of mathematical concepts and techniques to be used effectively. In some cases, it may be more appropriate to use other methods of problem solving.

Similar threads

  • Calculus and Beyond Homework Help
Replies
2
Views
122
  • Calculus and Beyond Homework Help
Replies
2
Views
513
  • Calculus and Beyond Homework Help
Replies
5
Views
622
  • Calculus and Beyond Homework Help
Replies
3
Views
821
  • Calculus and Beyond Homework Help
Replies
10
Views
740
  • Linear and Abstract Algebra
Replies
2
Views
422
  • Calculus and Beyond Homework Help
Replies
2
Views
599
  • Precalculus Mathematics Homework Help
Replies
1
Views
608
  • Calculus and Beyond Homework Help
Replies
6
Views
951
  • Topology and Analysis
Replies
16
Views
521
Back
Top