- #1
karush
Gold Member
MHB
- 3,269
- 5
$
v=\left[\begin{array}{r}
-3\\-4\\-5\\4\\-1
\end{array}\right]
w=\left[\begin{array}{r}
-2\\0 \\1 \\4 \\-1
\end{array}\right]
x=\left[\begin{array}{r}
2\\3 \\4 \\-5 \\0
\end{array}\right]
y=\left[\begin{array}{r}
-2\\1 \\0 \\-2 \\7
\end{array}\right]
z=\left[\begin{array}{r}
-1\\0 \\2 \\-3 \\5
\end{array}\right]
$
Construct matrices not yet row reduced echelon form whose null space consists all linear combinations of
1. just x
2. just y
3. just z
ok I presume this
$A_1=a_1\left[\begin{array}{r}2\\3 \\4 \\-5 \\0\end{array}\right]
=\left[\begin{array}{r}2a_1\\3a_1 \\4a_1 \\-5a_1 \\0\end{array}\right]
$
v=\left[\begin{array}{r}
-3\\-4\\-5\\4\\-1
\end{array}\right]
w=\left[\begin{array}{r}
-2\\0 \\1 \\4 \\-1
\end{array}\right]
x=\left[\begin{array}{r}
2\\3 \\4 \\-5 \\0
\end{array}\right]
y=\left[\begin{array}{r}
-2\\1 \\0 \\-2 \\7
\end{array}\right]
z=\left[\begin{array}{r}
-1\\0 \\2 \\-3 \\5
\end{array}\right]
$
Construct matrices not yet row reduced echelon form whose null space consists all linear combinations of
1. just x
2. just y
3. just z
ok I presume this
$A_1=a_1\left[\begin{array}{r}2\\3 \\4 \\-5 \\0\end{array}\right]
=\left[\begin{array}{r}2a_1\\3a_1 \\4a_1 \\-5a_1 \\0\end{array}\right]
$
Last edited: