Max of $st+tu+uv$ given $s,t,u,v$ sum 63

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Maximum
Click For Summary
SUMMARY

The maximum value of the expression \( st + tu + uv \) given the constraint that \( s + t + u + v = 63 \) is achieved when the values of \( s, t, u, \) and \( v \) are optimally distributed. The discussion highlights the importance of balancing the variables to maximize the product terms. The specific configuration that yields the highest value involves setting \( s, t, u, \) and \( v \) to values that are as close to each other as possible, adhering to the constraint of their sum being 63.

PREREQUISITES
  • Understanding of algebraic expressions and optimization techniques
  • Familiarity with the properties of positive integers
  • Knowledge of basic calculus or inequalities for optimization
  • Experience with problem-solving in combinatorial mathematics
NEXT STEPS
  • Explore the method of Lagrange multipliers for constrained optimization
  • Study the AM-GM inequality and its applications in maximizing products
  • Investigate integer programming techniques for optimization problems
  • Learn about symmetric functions and their properties in combinatorial contexts
USEFUL FOR

Mathematicians, students studying optimization problems, and anyone interested in combinatorial mathematics and algebraic expressions.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
If $s,\,t,\,u,\,v$ are positive integers with sum $63$, find the maximum value of $st+tu+uv$.
 
Mathematics news on Phys.org
My solution:

We are given the objective function:

$$f(s,t,u,v)=st+tu+uv$$

Subject to the constraint:

$$g(s,t,u,v)=s+t+u+v-63=0$$

Applying Lagrange multipliers, we obtain the system:

$$t=\lambda$$

$$s+u=\lambda$$

$$t+v=\lambda$$

$$u=\lambda$$

From this, we readily see $t=u$ and then $s=v=0$. Using the constraint, we then find:

$$2t=63\implies t=u=\frac{63}{2}=31.5$$

Since we require the variables to be positive integers, let $(s,t,u,v)=(1,30,31,1)$ (or equivalently $(s,t,u,v)=(1,31,30,1)$) as these permutations are the closest to the real number maximum, then we find:

$$f_{\max}=f(1,30,31,1)=1\cdot30+30\cdot31+31\cdot1=30+930+31=991$$
 
MarkFL said:
My solution:

We are given the objective function:

$$f(s,t,u,v)=st+tu+uv$$

Subject to the constraint:

$$g(s,t,u,v)=s+t+u+v-63=0$$

Applying Lagrange multipliers, we obtain the system:

$$t=\lambda$$

$$s+u=\lambda$$

$$t+v=\lambda$$

$$u=\lambda$$

From this, we readily see $t=u$ and then $s=v=0$. Using the constraint, we then find:

$$2t=63\implies t=u=\frac{63}{2}=31.5$$

Since we require the variables to be positive integers, let $(s,t,u,v)=(1,30,31,1)$ (or equivalently $(s,t,u,v)=(1,31,30,1)$) as these permutations are the closest to the real number maximum, then we find:

$$f_{\max}=f(1,30,31,1)=1\cdot30+30\cdot31+31\cdot1=30+930+31=991$$

Awesome, MarkFL! :D
 
anemone said:
If $s,\,t,\,u,\,v$ are positive integers with sum $63$, find the maximum value of $st+tu+uv$.

$st+tu+uv = (s+u)(v+t) -vs$
as in the 1st term v and s do not lie in isolation we can maximize $(s+u)(v+t)$ and then minimize $vs$ independently . clearly $(s+u)(v+t)$ is maximum when they are as close as possible
so $s+ u = 32$ and $v+t = 31$ or $s+u = 31$ and $v+ t = 32$
and vs is minimum when $v=s = 1$
so we have $s= 1, u= 31, v= 1, t= 30$ or $s = 1, u = 30, t= 31, v= 1$ and in both cases $st+tu+uv = 31 * 32-1 = 991$ maximum
 
kaliprasad said:
$st+tu+uv = (s+u)(v+t) -vs$
as in the 1st term v and s do not lie in isolation we can maximize $(s+u)(v+t)$ and then minimize $vs$ independently . clearly $(s+u)(v+t)$ is maximum when they are as close as possible
so $s+ u = 32$ and $v+t = 31$ or $s+u = 31$ and $v+ t = 32$
and vs is minimum when $v=s = 1$
so we have $s= 1, u= 31, v= 1, t= 30$ or $s = 1, u = 30, t= 31, v= 1$ and in both cases $st+tu+uv = 31 * 32-1 = 991$ maximum

This was posted at http://mathhelpboards.com/challenge-questions-puzzles-28/find-maximum-sum-11061.html
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 5 ·
Replies
5
Views
4K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
3
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K