Maximal Ideal of Z[sqrt(-19)]: Showing Why (2, 1+sqrt(-19)) Works

  • Context: MHB 
  • Thread starter Thread starter Jooolz
  • Start date Start date
  • Tags Tags
    Works
Click For Summary

Discussion Overview

The discussion revolves around the question of why the ideal (2, 1+sqrt(-19)) is a maximal ideal in the ring Z[sqrt(-19)]. Participants explore methods to demonstrate this property, including a proposed ring homomorphism and the characterization of elements in the ideal.

Discussion Character

  • Exploratory
  • Technical explanation
  • Mathematical reasoning

Main Points Raised

  • One participant asks for hints on showing that (2, 1+sqrt(-19)) is a maximal ideal.
  • Another participant suggests defining a map f: Z[sqrt(-19)] → Z/2Z to show that the kernel is (2, 1+sqrt(-19)), arguing that since the range is a simple ring, the kernel must be maximal.
  • A participant expresses confusion about the equivalence of the kernel of the homomorphism and the ideal (2, 1+sqrt(-19)), seeking clarification on the form of elements in the ideal.
  • One participant describes their approach to the problem, demonstrating that elements of the form a+b*sqrt(-19) can be expressed as linear combinations of 2 and 1+sqrt(-19) when a-b is even.
  • Another participant confirms that the set J, defined by the condition that a-b is even, is indeed an ideal containing 2 and 1+sqrt(-19), and provides a verification of its properties.
  • One participant thanks others for their help and inquires about the implications regarding the multiplier ring of the ideal and its invertibility.

Areas of Agreement / Disagreement

Participants express varying levels of understanding and approaches to the problem, with some agreeing on the method involving the homomorphism while others seek clarification on specific points. The discussion remains unresolved regarding the implications of the ideal's properties.

Contextual Notes

Participants note that the equivalence of the kernel and the ideal is not immediately clear, indicating potential missing assumptions or steps in the reasoning process.

Jooolz
Messages
14
Reaction score
0
hello all of you

Why is (2, 1+sqrt(-19)) a maximal ideal of Z[sqrt(-19)]? How to show such thing?

I thank you for any hints
 
Physics news on Phys.org
Loiz said:
hello all of you

Why is (2, 1+sqrt(-19)) a maximal ideal of Z[sqrt(-19)]? How to show such thing?

I thank you for any hints
There may be better ways to do this, using results from Galois theory. But if you want a bare-hands method, try this. Define a map $f:\mathbb{Z}[\sqrt{-19}] \to \mathbb{Z}/2\mathbb{Z}$ by $f(a+b\sqrt{-19}) = a-b \pmod2.$ Show that $f$ is a ring homomorphism with kernel $(2, 1+\sqrt{-19}).$ Since the range of $f$ is a simple ring, it follows that the kernel must be a maximal ideal.
 
Opalg said:
There may be better ways to do this, using results from Galois theory. But if you want a bare-hands method, try this. Define a map $f:\mathbb{Z}[\sqrt{-19}] \to \mathbb{Z}/2\mathbb{Z}$ by $f(a+b\sqrt{-19}) = a-b \pmod2.$ Show that $f$ is a ring homomorphism with kernel $(2, 1+\sqrt{-19}).$ Since the range of $f$ is a simple ring, it follows that the kernel must be a maximal ideal.

Thank you very much for your help.

but i get stuck with this
kernel($f$)= {$a + b\sqrt{-19} : f(a+b\sqrt{-19})=0$} = {$a+b\sqrt{-19} : a -b \pmod2 $}={$a+b\sqrt{-19} : a=b \pmod2 $}

I am missing something crucial here cause i just don't understand why this is equivalent to the ideal $(2, 1+\sqrt{-19})$. What does an element in this ideal look like?

thanks again!
 
Loiz said:
Thank you very much for your help.

but i get stuck with this
kernel($f$)= {$a + b\sqrt{-19} : f(a+b\sqrt{-19})=0$} = {$a+b\sqrt{-19} : a -b \pmod2 $}={$a+b\sqrt{-19} : a=b \pmod2 $}

I am missing something crucial here cause i just don't understand why this is equivalent to the ideal $(2, 1+\sqrt{-19})$. What does an element in this ideal look like?
The way I approached this problem was to start by writing an element $a+b\sqrt{-19}\in \mathbb{Z}[\sqrt{-19}]$ as $a+b\sqrt{-19} = (a-b) + b(1+\sqrt{-19}).$ If $a-b$ is even, say $a-b=2k$, then $a+b\sqrt{-19} = 2k + b(1+\sqrt{-19}).$ That is a linear combination of $2$ and $1+\sqrt{-19}$, and is therefore in the ideal.

Conversely, the set $J = \{a+b\sqrt{-19}\in \mathbb{Z}[\sqrt{-19}] : a-b \text{ is even}\}$ is an ideal in $\mathbb{Z}[\sqrt{-19}]$, which contains $2$ and $1+\sqrt{-19}$. To see that it is an ideal, you need to show that if $a+b\sqrt{-19}\in J$ and $x+y\sqrt{-19} \in \mathbb{Z}[\sqrt{-19}]$, then their product is in $J$. The calculation for that goes like this: $(a+b\sqrt{-19})(x+y\sqrt{-19}) = (ax-19by) + (ay+bx)\sqrt{-19})$, and $(ax-19by) - (ay+bx) = (a-b)x - (a+19b)y$. Since $a+19b = (a-b) + 20b$, which is an even number, it follows that $(ax-19by) - (ay+bx)$ is even, as required.

That shows that $J = (2, 1+\sqrt{-19})$. So to see whether an element $a+b\sqrt{-19}$ is in $(2, 1+\sqrt{-19})$, you just need to check whether $a-b$ is even or odd. That is what suggested to me the idea of defining the homomorphism $f:\mathbb{Z}[\sqrt{-19}] \to \mathbb{Z}/2\mathbb{Z}.$
 
Opalg said:
The way I approached this problem was to start by writing an element $a+b\sqrt{-19}\in \mathbb{Z}[\sqrt{-19}]$ as $a+b\sqrt{-19} = (a-b) + b(1+\sqrt{-19}).$ If $a-b$ is even, say $a-b=2k$, then $a+b\sqrt{-19} = 2k + b(1+\sqrt{-19}).$ That is a linear combination of $2$ and $1+\sqrt{-19}$, and is therefore in the ideal.

Conversely, the set $J = \{a+b\sqrt{-19}\in \mathbb{Z}[\sqrt{-19}] : a-b \text{ is even}\}$ is an ideal in $\mathbb{Z}[\sqrt{-19}]$, which contains $2$ and $1+\sqrt{-19}$. To see that it is an ideal, you need to show that if $a+b\sqrt{-19}\in J$ and $x+y\sqrt{-19} \in \mathbb{Z}[\sqrt{-19}]$, then their product is in $J$. The calculation for that goes like this: $(a+b\sqrt{-19})(x+y\sqrt{-19}) = (ax-19by) + (ay+bx)\sqrt{-19})$, and $(ax-19by) - (ay+bx) = (a-b)x - (a+19b)y$. Since $a+19b = (a-b) + 20b$, which is an even number, it follows that $(ax-19by) - (ay+bx)$ is even, as required.

That shows that $J = (2, 1+\sqrt{-19})$. So to see whether an element $a+b\sqrt{-19}$ is in $(2, 1+\sqrt{-19})$, you just need to check whether $a-b$ is even or odd. That is what suggested to me the idea of defining the homomorphism $f:\mathbb{Z}[\sqrt{-19}] \to \mathbb{Z}/2\mathbb{Z}.$

Thank you so much! :-)

Do you possibly know why it now follows that the multiplier ring of the ideal is not equal to $\mathbb{Z}[\sqrt{-19}]$? And that the ideal is not invertible?
 

Similar threads

  • · Replies 25 ·
Replies
25
Views
2K
Replies
3
Views
1K
  • · Replies 13 ·
Replies
13
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 31 ·
2
Replies
31
Views
2K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K