MHB Maximum Value of k in $(1+\frac{1}{a})(1+\frac{1}{b}) \ge k$ is 9

  • Thread starter Thread starter Mathick
  • Start date Start date
  • Tags Tags
    Maximum Value
Click For Summary
For positive real numbers a and b such that a + b = 1, the inequality (1 + 1/a)(1 + 1/b) is established, leading to the conclusion that the maximum value of k is 9. This is derived using Cauchy's inequality, which shows that 1 + 2/ab achieves its maximum when ab is minimized, specifically at ab = 1/4. Substituting a = b = 1/2 confirms that the equality holds, resulting in k = 9. The calculations demonstrate that the maximum value of k is indeed 9, validating the initial assertion. Thus, the maximum value of k in the given inequality is confirmed as 9.
Mathick
Messages
23
Reaction score
0
For any positive real numbers a, b such that $a+b=1$, the inequality $(1+\frac{1}{a})(1+\frac{1}{b})\ge k$. Find the maximum value of $k \in \Bbb{R}$.

I did:

$(1+\frac{1}{a})(1+\frac{1}{b})= \frac{a+1}{a} \cdot \frac{b+1}{b}=\frac{ab+a+b+1}{ab}= 1+\frac{2}{ab} \ge k$

Using the Cauchy's inequality, we have

$\frac{a+b}{2} \ge \sqrt{ab} \implies \frac{1}{4} \ge ab \implies \frac{1}{ab} \ge 4 \implies \frac{2}{ab} \ge 8$

Thus,

$(1+\frac{1}{a})(1+\frac{1}{b})= 1+\frac{2}{ab} \ge 1+ 8 = 9$

Therefore maximum value of k is 9. Is it correct?
 
Last edited:
Mathematics news on Phys.org
Hi Mathick,

The answer is correct, but you should give values of $a$ and $b$ that make the equality hold. Letting $a = b = 1/2$ will do.
 
Mathick said:
For any positive real numbers a, b such that $a+b=1$, the inequality $(1+\frac{1}{a})(1+\frac{1}{b})\ge k$. Find the maximum value of $k \in \Bbb{R}$.

...

And I did:

Substitute b = 1-a and you'll get

$$k(a)\leq \frac{(a+1)(a-2)}{a(a-1)}$$

Calculate the extremum by using the 1st derivation:

$$\frac{dk}{da}\leq \frac{2(2a-1)}{a^2(a^2-1)}$$

which is zero if $$a = \frac12$$. Determine b.
 
earboth said:
And I did:

Substitute b = 1-a and you'll get

$$k(a)\leq \frac{(a+1)(a-2)}{a(a-1)}$$

Calculate the extremum by using the 1st derivation:

$$\frac{dk}{da}\leq \frac{2(2a-1)}{a^2(a^2-1)}$$

which is zero if $$a = \frac12$$. Determine b.

Well... but how to find a value of k now?
 
Mathick said:
Well... but how to find a value of k now?

Good morning,

replace a by $$\frac12$$ in

$$k(a)\leq \frac{(a+1)(a-2)}{a(a-1)}$$

and you'll get

$$k\left(\frac12 \right) \leq \frac{\left(\frac12 +1 \right)\left(\frac12 - 2 \right)}{\frac12 \left(\frac12 - 1 \right)} = \frac{-\frac94}{-\frac14}=9$$

That is the maximum value for k.
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
905
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
864
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K