I Maxwell stress tensor

  • I
  • Thread starter Thread starter Rick16
  • Start date Start date
Rick16
Messages
132
Reaction score
31
TL;DR Summary
I am trying to find the divergence of the Maxwell stress tensor.
This is from Griffiths' Electrodynamics, 3rd edition, page 352.

I am trying to calculate the divergence of the Maxwell stress tensor. The tensor is given as ##T_{ij} =\epsilon_0 (E_iE_j-\frac 1 2 \delta_{ij} E^2)+\frac 1 {\mu_0}(B_iB_j-\frac 1 2 \delta_{ij} B^2)##. To make things easier, I just want to focus on the part with the electrical field, i.e. I want to find the divergence of ##E_{ij}=E_iE_j-\frac 1 2 \delta_{ij}E^2##.

In matrix form, this tensor should look like this:

$$E_{ij}=E_iE_j-\frac 1 2 \delta_{ij}E^2=\begin{pmatrix}\frac 1 2 (E_x^2 -E_y^2 -E_z^2) & E_xE_y & E_xE_z \\ E_yE_x & \frac 1 2 (E_y^2 - E_x^2 -E_z^2) & E_yE_z \\ E_zE_x &E_zE_y & \frac 1 2 (E_z^2 -E_x^2 -E_y^2)\end{pmatrix}$$

According to the book, its divergence should be ##(\nabla \cdot \vec E)\vec E+(\vec E \cdot \nabla)\vec E- \frac 1 2 \nabla E^2##. Here is already a confusing part: Is ##(\nabla \cdot \vec E)\vec E## different from ##(\vec E \cdot \nabla)\vec E##? The components of a dot product are interchangeable, so what could ##\vec E \cdot \nabla## be, other than the divergence of ##\vec E##?

In any case, I continue with the calculation of the divergence:

$$\nabla \cdot E_{ij}=\sum_i \nabla_i E_{ij}=\begin{pmatrix}
\frac \partial {\partial x}E_{xx} +\frac \partial {\partial y}E_{yx}+ \frac \partial {\partial z}E_{zx} \\
\frac \partial {\partial x}E_{xy} +\frac \partial {\partial y}E_{yy}+ \frac \partial {\partial z}E_{zy} \\
\frac \partial {\partial x}E_{xz} +\frac \partial {\partial y}E_{yz}+ \frac \partial {\partial z}E_{zz}
\end{pmatrix} =$$
$$\begin{pmatrix}
\frac \partial {\partial x}(\frac 1 2 (E_x^2 -E_y^2 -E_z^2)) +\frac \partial {\partial y}E_yE_x+ \frac \partial {\partial z}E_zE_x \\
\frac \partial {\partial x}E_xE_y +\frac \partial {\partial y}(\frac 1 2 (E_y^2 - E_x^2 -E_z^2))+ \frac \partial {\partial z}E_zE_y \\
\frac \partial {\partial x}E_xE_z +\frac \partial {\partial y}E_yE_z+ \frac \partial {\partial z}\frac 1 2 (E_z^2 -E_x^2 -E_y^2)
\end{pmatrix} = $$
$$\begin{pmatrix}
E_x \frac {\partial E_x} {\partial x} + E_x \frac {\partial E_y} {\partial y} + E_x \frac {\partial E_z} {\partial z} \\
E_y \frac {\partial E_x} {\partial x} + E_y \frac {\partial E_y} {\partial y} + E_y \frac {\partial E_z} {\partial z} \\
E_z \frac {\partial E_x} {\partial x} + E_z \frac {\partial E_y} {\partial y} + E_z \frac {\partial E_z} {\partial z}
\end{pmatrix} =
\begin{pmatrix}
E_x\nabla \cdot \vec E \\ E_y \nabla \cdot \vec E \\ E_z \nabla \cdot \vec E
\end{pmatrix} = \nabla \cdot \vec E \begin{pmatrix}E_x \\ E_y \\ E_z \end{pmatrix} = (\nabla \cdot \vec E)\vec E
$$

This is only part of the answer that I was hoping to get, namely ##(\nabla \cdot \vec E)\vec E+(\vec E \cdot \nabla)\vec E- \frac 1 2 \nabla E^2##. What is wrong with my calculation?
 
It may be shown from the equations of electromagnetism, by James Clerk Maxwell in the 1860’s, that the speed of light in the vacuum of free space is related to electric permittivity (ϵ) and magnetic permeability (μ) by the equation: c=1/√( μ ϵ ) . This value is a constant for the vacuum of free space and is independent of the motion of the observer. It was this fact, in part, that led Albert Einstein to Special Relativity.

Similar threads

Replies
2
Views
1K
Replies
1
Views
2K
Replies
1
Views
1K
Replies
19
Views
2K
Replies
9
Views
2K
Replies
2
Views
2K
Back
Top