MHB Mean and variance from a probability distribution function

fred1
Messages
1
Reaction score
0
f(x)=f(x)={█(2/(√2π) e^(〖-x〗^2/2)@0 otherwise)┤for 0<x<∞

Find the mean and variance of X
The hint says, compute E(X) directly and then compute E(X2) by comparing that integral with the integral representing the variance of a variable that is N (0, 1)
 

Attachments

Physics news on Phys.org
Hello fred,

I find the probability distribution function, as given, hard to interpret, and the attached file does not help me.

What do the symbols "@0" and "┤" mean?
 
fred said:
f(x)=f(x)={█(2/(√2π) e^(〖-x〗^2/2)@0 otherwise)┤for 0<x<∞

Find the mean and variance of X
The hint says, compute E(X) directly and then compute E(X2) by comparing that integral with the integral representing the variance of a variable that is N (0, 1)

I'm making an educated guess with this, but is this the pdf?

\[f(x)=\begin{cases} \frac{2}{\sqrt{2\pi}} e^{-x^2/2} & 0<x<\infty\\ 0 & \text{otherwise}\end{cases}\]

I would recommend that you look at our LaTeX help subforums for learning how to use LaTeX on our forums.

Anyways, if that's the proper pdf, then you have that

\[E[X] = \int_{-\infty}^{\infty} xf(x)\,dx\quad\text{and}\quad E[X^2]=\int_{-\infty}^{\infty}x^2f(x)\,dx\]

Furthermore, they want you to evaluate $E[X^2]$ by comparing it to the variance integral for $\mathcal{N}(0,1)$. Since the pdf of $\mathcal{N}(0,1)$ is
\[f(x)=\frac{1}{\sqrt{2\pi}} e^{-x^2/2}\]
and since we know that $E[X]=0$, we have that
\[1=\text{Var}[X]=E[X^2]-(E[X])^2=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}x^2e^{-x^2/2}\,dx\]
Thus, to evaluate $\displaystyle\int_{-\infty}^{\infty} x^2f(x)\,dx$, you'll need to use the fact that $\displaystyle\int_{-\infty}^{\infty} x^2e^{-x^2/2}\,dx = \sqrt{2\pi}$.

I hope this helps!
 
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Thread 'Detail of Diagonalization Lemma'
The following is more or less taken from page 6 of C. Smorynski's "Self-Reference and Modal Logic". (Springer, 1985) (I couldn't get raised brackets to indicate codification (Gödel numbering), so I use a box. The overline is assigning a name. The detail I would like clarification on is in the second step in the last line, where we have an m-overlined, and we substitute the expression for m. Are we saying that the name of a coded term is the same as the coded term? Thanks in advance.
Back
Top