MHB Mean and variance from a probability distribution function

Click For Summary
The discussion focuses on finding the mean and variance of a given probability distribution function, which is defined for 0<x<∞. Participants express confusion over the notation in the function and clarify that the correct probability density function (pdf) is f(x) = (2/√(2π)) e^(-x²/2) for 0<x<∞. To compute the expected value E[X] and E[X²], they suggest using integrals and comparing E[X²] with the variance of the standard normal distribution N(0, 1). The conversation emphasizes the importance of understanding the integral calculations involved in determining the mean and variance.
fred1
Messages
1
Reaction score
0
f(x)=f(x)={█(2/(√2π) e^(〖-x〗^2/2)@0 otherwise)┤for 0<x<∞

Find the mean and variance of X
The hint says, compute E(X) directly and then compute E(X2) by comparing that integral with the integral representing the variance of a variable that is N (0, 1)
 

Attachments

Physics news on Phys.org
Hello fred,

I find the probability distribution function, as given, hard to interpret, and the attached file does not help me.

What do the symbols "@0" and "┤" mean?
 
fred said:
f(x)=f(x)={█(2/(√2π) e^(〖-x〗^2/2)@0 otherwise)┤for 0<x<∞

Find the mean and variance of X
The hint says, compute E(X) directly and then compute E(X2) by comparing that integral with the integral representing the variance of a variable that is N (0, 1)

I'm making an educated guess with this, but is this the pdf?

\[f(x)=\begin{cases} \frac{2}{\sqrt{2\pi}} e^{-x^2/2} & 0<x<\infty\\ 0 & \text{otherwise}\end{cases}\]

I would recommend that you look at our LaTeX help subforums for learning how to use LaTeX on our forums.

Anyways, if that's the proper pdf, then you have that

\[E[X] = \int_{-\infty}^{\infty} xf(x)\,dx\quad\text{and}\quad E[X^2]=\int_{-\infty}^{\infty}x^2f(x)\,dx\]

Furthermore, they want you to evaluate $E[X^2]$ by comparing it to the variance integral for $\mathcal{N}(0,1)$. Since the pdf of $\mathcal{N}(0,1)$ is
\[f(x)=\frac{1}{\sqrt{2\pi}} e^{-x^2/2}\]
and since we know that $E[X]=0$, we have that
\[1=\text{Var}[X]=E[X^2]-(E[X])^2=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}x^2e^{-x^2/2}\,dx\]
Thus, to evaluate $\displaystyle\int_{-\infty}^{\infty} x^2f(x)\,dx$, you'll need to use the fact that $\displaystyle\int_{-\infty}^{\infty} x^2e^{-x^2/2}\,dx = \sqrt{2\pi}$.

I hope this helps!
 
There is a nice little variation of the problem. The host says, after you have chosen the door, that you can change your guess, but to sweeten the deal, he says you can choose the two other doors, if you wish. This proposition is a no brainer, however before you are quick enough to accept it, the host opens one of the two doors and it is empty. In this version you really want to change your pick, but at the same time ask yourself is the host impartial and does that change anything. The host...

Similar threads

  • · Replies 42 ·
Replies
42
Views
5K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
4
Views
2K
Replies
5
Views
5K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K
Replies
1
Views
3K
  • · Replies 3 ·
Replies
3
Views
1K
Replies
12
Views
5K