@fresh_42 For the above passage:
"We want to sketch the basics of this approach in brief terms. For ##f\in R## and ##x\in\text{Spec }R## define ##f(x)## as the residue class of ##f## in ##R/\mathfrak{p}_x##. Here ##\mathfrak{p}_x## is a second notation instead of ##X##, just to remember that the
point ##x## is, in reality, a prime ideal in ##R##. This way, elements ##f\in R## can be interpreted as functions
$$f:\text{Spec }R\to \coprod_{x\in\text{Spec }}R/\mathfrak{p}_x.\quad (*)$$
In particular, assertion like ##f(x)=0## or ##f(x)\neq 0## make sense and just means ##f\in \mathfrak{p}_x## or ##f\not\in \mathfrak{p}_x##. "
I have the following listed of definitions, observations, examples, etc from Adamek's text Theory of Mathematical Structures.(Is a really old text.)
'
##\textbf{Definition 1:}## A
coproduct of a collection of objects ##A_i,i\in I,## is an object ##A## together morphism (called
injections)##\\\\##
$$\epsilon_i:A_i\to A \text{ for all } i\in I$$
which have the following universal property:##\\\\##
##\quad## For each collection of morphisms ##f_i:A_i\to B,i\in I,## there exists a unique morphism ##f:A\to B## with ##f_i=f\cdot \epsilon_i## for each ##i\in I.\\\\##
Notation: The above object ##A## is denoted by ##\coprod_{i\in I}A_i## (in case ##I=\{1,2\}## also by ##A_1+A_2,## analogously ##A_1+A_2+A_3,## etc.). A category is said to
have coproducts if each collection of its objects has a coproduct.##\\\\##
##\textbf{Example:}## Coproducts of sets. ##\\\\##
(a) Let ##X_i,i\in I,## be pairwise disjoint sets. Their coproduct in ##\textbf{Set}## is their union
$$X=\cup_{i\in I}X_i$$
together with the inclusion maps##\\\\##
$$v_i:X_i\to X,i\in I.$$
Indeed, for each collection of maps##\\\\##
$$f_i:X_i\to Y.i\in I,$$
we have a unique map##\\\\##
$$f:X\to Y,$$
which coincides with ##f_i## on the subset ##X_i\subset X## for all ##i\in I,## in other words, a unique map with##\\\\##
$$f_i=f\circ v_i\text{ for each }i\in I.$$
(b) In case the sets ##X_i## fail to be pairwise disjoint, we first "separate" them. This is done by writing their elements as pairs ##(x,i)## where ##x## is an (arbitrary) element of ##X_i## and ##i## states explicitly which set is being considered. Thus, instead of the set ##X_i## we work with##\\\\##
$$X_i\times\{i\}=\{(x,i):x\in X_i\}:$$'
##\textbf{Definition 2:}## The
disjoint union of sets ##X_i,i\in I,## is the set##\\\\##
$$X=\cup_{i\in I}X_i\times \{i\}.$$
##\text{Observations:}## (i) The disjoint union ##X## is the coproduct of the sets ##X-i,i\in I.## with respect too the injections##\\\\##
$$\epsilon_i:X_i\to X\quad (i\in I)$$
defined by##\\\\##
$$\epsilon_i(x)=(x,i)\quad (i\in I;x\in X_i).$$
I want to give rigorous definitions for the following in the above quoted passage for the following notations:##\\\\##
$$1)\;f:\text{Spec }R\to \coprod_{x\in\text{Spec }}R/\mathfrak{p}_x, x\in \text{Spec }R, \mathfrak{p}_x, \coprod_{x\in\text{Spec }}R/\mathfrak{p}_x.$$
and the phrase:##\\\\##
##2)\;f(x)## as the residue class of ##f## in ##R/\mathfrak{p}_x.\\\\##
##\textbf{(1)}\\\\##
For ##\text{Spec } R, \text{Spec } R = \{ \mathfrak{p} \subset R : \mathfrak{p} \text{ is a prime ideal in } R \}\\\\##.
For ##\mathfrak{p}_x##. It means the prime ideal in ##R## corresponding to ##x##, or equivalently, the point ##x## corresponds to a prime ideal ##\mathfrak{p}_x \subset R.\\\\##
As for ##R / \mathfrak{p}_x,## it is the set of cosets ##R / \mathfrak{p}_x = \{ a + \mathfrak{p}_x : a \in R \}= \{ a + b : b \in \mathfrak{p}_x \}.\\\\##
For ##x \in \text{Spec } R\\\\##
Since ##x \in \text{Spec } R## corresponds to a prime ideal ##\mathfrak{p}_x##, we can write:##\\\\##
$$\{ x : x \in \text{Spec } R \} = \{ \mathfrak{p}: \mathfrak{p} \subset R, \mathfrak{p} \text{ is a prime ideal in }R\}$$
and each ##x## is identified with a prime ideal ##\mathfrak{p}_x\\\\##
For ##\coprod_{x \in \text{Spec } R} R / \mathfrak{p}_x\\\\##
From the quoted materials in Adamek from above,##\\\\##
The coproduct of sets ##X_i, i \in I## is the disjoint union##\\\\##
$$\coprod_{i \in I} X_i = \bigcup_{i \in I} X_i \times \{ i \},$$
with injections ##\epsilon_i : X_i \to \coprod_{i \in I} X_i, \epsilon_i(x) = (x, i).\\\\##
Applying to the case for the family of quotient rings ##R / \mathfrak{p}_x## indexed by ## x \in \text{Spec } R\\\\##
is defined as:
$$\coprod_{x \in \text{Spec } R} R / \mathfrak{p}_x = \bigcup_{x \in \text{Spec } R} (R / \mathfrak{p}_x) \times \{ x \}$$
Expanding the definition even further using set builder notations, we have:
$$\coprod_{x \in \text{Spec } R} R / \mathfrak{p}_x = \{ (a + \mathfrak{p}_x, x) : x \in \text{Spec } R, a + \mathfrak{p}_x \in R / \mathfrak{p}_x\}$$
where ##R / \mathfrak{p}_x## has already been defined, and the pair ##(a + \mathfrak{p}_x, x)## means that the element ##a + \mathfrak{p}_x## belongs to the copy of ##R / \mathfrak{p}_x## indexed by ##x,\\\\##
The injections for the coproduct are:
$$\epsilon_x : R / \mathfrak{p}_x \to \coprod_{x \in \text{Spec } R} R / \mathfrak{p}_x, \quad \epsilon_x(a + \mathfrak{p}_x) = (a + \mathfrak{p}_x, x)$$
and expanding the definition for the map ##f : \text{Spec } R \to \coprod_{x \in \text{Spec } R} R / \mathfrak{p}_x## even further in terms of set builder notation, for each ##x \in \text{Spec } R##
$$f(x) = (f + \mathfrak{p}_x, x) \in (R / \mathfrak{p}_x) \times \{ x \} \subset \coprod_{x \in \text{Spec } R} R / \mathfrak{p}_x$$
Then universal property for the coproduct is defined, as for any set ##Y## and maps ##g_x : R / \mathfrak{p}_x \to Y##, there exists a unique map ##h : \coprod_{x \in \text{Spec } R} R / \mathfrak{p}_x \to Y## such that ##g_x = h \circ \epsilon_x##, defined by ##h((a + \mathfrak{p}_x, x)) = g_x(a + \mathfrak{p}_x).\\\\##
##\textbf{(2)}\\\\##
2) To define ##f(x)## as the residue class of ##f \in R / \mathfrak{p}_x,\\\\##
- Let ##R## be a commutative ring with identity.##\\\\##
We know that the spectrum ##\text{Spec } R## is the set of all prime ideals of ##R:\\\\##
$$\text{Spec } R = \{ \mathfrak{p} \subset R : \mathfrak{p} \text{ is a prime ideal in } R\}.$$
Then for any element ##f \in R##, the residue class of ##f \in R / \mathfrak{p}_x## is the coset$\\\\$
$$f + \mathfrak{p}_x = \{ f + b : b \in \mathfrak{p}_x \}.$$
The map ##f : \text{Spec } R \to \coprod_{x \in \text{Spec } R} R / \mathfrak{p}_x## is defined such that for each ##x \in \text{Spec } R ,\\\\##
$$f(x) = f + \mathfrak{p}_x \in R / \mathfrak{p}_x.$$
where ##f(x)## assigns to each prime ideal ##\mathfrak{p}_x## the equivalence class of ##f## in the quotient ring ##R / \mathfrak{p}_x##. The value ##f(x) = 0 \in R / \mathfrak{p}_x## (i.e., the zero coset ##\mathfrak{p}_x##) occurs if and only if ##f \in \mathfrak{p}_x##, and ##f(x) \neq 0## means ##f \not\in \mathfrak{p}_x.\\\\##
This means the elements ##f \in R ## are consider as ``functions" on ##\text{Spec } R##, with values in the disjoint union of the quotient rings ##R / \mathfrak{p}_x.\\\\##
I have avoid mentioning anything having to do with category theory.