MHB Measurable Function (Another Question)

Click For Summary
If a function f:ℝ→ℝ is measurable and E is a measurable subset of ℝ, then f(E) is not necessarily measurable. A counterexample involves the Cantor function, which demonstrates that the image of a measurable set can be non-measurable. However, if f is continuous, the image of a measurable set is indeed measurable due to the connectedness of continuous functions' ranges. The discussion highlights the importance of understanding the properties of measurable and continuous functions in real analysis. Overall, both questions posed in the discussion conclude that the answer is no, with specific examples provided to illustrate the reasoning.
TheBigBadBen
Messages
79
Reaction score
0
Is it true that if $$f:\mathbb{R}\rightarrow\mathbb{R}$$ is a measurable function and $$E\subset\mathbb{R}$$ is measurable, then $$f(E)$$ is measurable? What if f is assumed to be continuous?

I think that the answer is no for the first and yes for the second, but I have no idea how to prove/disprove either.
 
Physics news on Phys.org
girdav said:
Indeed, for the first question the answer is no: real analysis - Range of function measurable? - Mathematics Stack Exchange

For the second one, the range of $\Bbb R$ of a continuous function is connected. What are the connected subsets of the real line? Are they measurable?

As it ends up, my intuition for the second problem was totally off. In fact, the counterexample handily provided for my other question
http://www.mathhelpboards.com/f50/measurable-function-4789/
does the job here.

We have the following argument:
Let $$f(x)$$ be the Cantor function, and let C be the cantor set. Note that $$f(C) = [0,1]$$, since f is non-increasing on all points outside of C.

Define $$g:[0,1]\rightarrow [0,2]$$ by $$g(x) = x + f(x)$$. Since g maps every interval outside of C to an interval of the same length, we can deduce that $$m(g(C))=1$$. By Vitali's theorem, there is a non-measurable set $$A\subset g(C)$$. Note that $$B:=g^{-1}(A)$$ is a subset of C. Because B is a subset of a null set, B is null and hence measurable.

Thus, we have $$g(B) = A$$. g is a continuous (and hence measurable) function that takes a measurable set, B, to a non-measurable set, A. Thus, the answer to both questions is no.
 
You are right. For the second question I misread the question, I believed you asked about $f(\Bbb R)$. I've now edited.

Your counter-example seems correct.
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K