Measure theory question: Countable sub-additivity

Click For Summary
The discussion centers on the concept of countable sub-additivity in measure theory, specifically regarding the relationship between a set E and a countable union of sets E_j. It highlights that if E equals the union of E_j, then the external measure m^*(E) should be less than or equal to the sum of the measures of E_j. The confusion arises from incorrectly assuming that the reverse inequality also holds, which is not the case. The clarification emphasizes that the measure of the union of sets does not equal the sum of their individual measures. This distinction is crucial for understanding the properties of external measures in measure theory.
Cascabel
Messages
2
Reaction score
0
I have a question on sub-additivity. For sets ##E## and ##E_j##, the property states that if

##E=\bigcup_{j=0}^{\infty}E_j##

then

##m^*(E) \leq \sum_{j=0}^{\infty}m^*(E_j)##, where ##m^*(x)## is the external measure of ##x##.

Since ##E\subset \bigcup_{j=0}^{\infty}E_j##, by set equality, the property seems to follow from monotonicity.

However, it is also true that, ##\bigcup_{j=0}^{\infty} E_j \subset E##, which seems to imply the reverse inequality, ##\sum_{j=0}^{\infty} m^*(E_j)\leq m^*(E)##, which is not true.

What's wrong?
 
Physics news on Phys.org
Sorry, figured it out.

Sorry, figured it out, ##m^* \left (\bigcup_{j=0}^{\infty}E_j \right ) \neq \sum_{j=0}^{\infty} m^*(E_j)##.
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K