- #1

- 2

- 0

##E=\bigcup_{j=0}^{\infty}E_j##

then

##m^*(E) \leq \sum_{j=0}^{\infty}m^*(E_j)##, where ##m^*(x)## is the external measure of ##x##.

Since ##E\subset \bigcup_{j=0}^{\infty}E_j##, by set equality, the property seems to follow from monotonicity.

However, it is also true that, ##\bigcup_{j=0}^{\infty} E_j \subset E##, which seems to imply the reverse inequality, ##\sum_{j=0}^{\infty} m^*(E_j)\leq m^*(E)##, which is not true.

What's wrong?