Meteorite heading towards earth

  • Thread starter Thread starter josephcollins
  • Start date Start date
  • Tags Tags
    Earth Meteorite
Click For Summary
SUMMARY

A meteorite with an initial velocity of u = 2.00 x 104 m/s approaches Earth, colliding with a final velocity v calculated to be 2.15 x 104 m/s. The calculation utilizes the principle of conservation of energy, equating the change in kinetic energy to gravitational potential energy. The radius of Earth is 6.37 x 106 m, and gravitational acceleration is g = 9.80 N/kg. The discussion also touches on the terminology surrounding meteoroids and meteors, clarifying distinctions in their definitions.

PREREQUISITES
  • Understanding of gravitational potential energy and kinetic energy principles
  • Familiarity with the conservation of energy concept
  • Basic knowledge of physics terminology related to meteoroids and meteorites
  • Ability to perform calculations involving gravitational acceleration and mass
NEXT STEPS
  • Study the principles of conservation of energy in physics
  • Learn about the differences between meteoroids, meteors, and meteorites
  • Explore gravitational potential energy calculations in astrophysics
  • Investigate the effects of high-velocity impacts on planetary bodies
USEFUL FOR

Students in physics, astrophysics enthusiasts, and anyone interested in understanding the dynamics of meteoroids and their impact on Earth.

josephcollins
Messages
59
Reaction score
0
Hi ppl. I have a short question. A meteorite of mass m has a velocity u=2.00*10^4 m/s when it is at an infinite distance from the earth. It eventually collides with the eath with a velocity v. Calculate v. given are the radius of earth(6.37*10^6m) and go=9.80Nkg^-1)

I used the argument that the change in kinetic energy is going to be equal to 0.5m(v^2-u^2) which also equals GMem/2Re which resolves to goRem/2. Equating and calculating gives 2.15*10^4m/s. Could someone verify that this is correct and that potential energy or total energy is not neglected in my reasoning? thanks, joe
 
Physics news on Phys.org
josephcollins said:
I used the argument that the change in kinetic energy is going to be equal to 0.5m(v^2-u^2) which also equals GMem/2Re which resolves to goRem/2.
I don't see why you divided by 2. (The change in PE should equal g R_e m)
 
Last edited:
Wow! That meteorite had quite the bounce to it to achieve that high and fast of an arc, don't you think?

Or perhaps your prof meant meteor?

;)
 
I'll bet the prof meant meteoroid on its way to becoming a meteorite. (If the meteoroid burns up--becoming a "shooting star"--then it would be a meteor.)

Regardless, that's one heck of a meteoroid to make it through the atmosphere with no apparent loss of mass. :smile:
 
Most scenarios seem to imply that massive objects hitting our planet would be traveling at a speed that would give days if not weeks of warning.

Is there any reason that a meteor should not hit the Earth at a very high relative velocity? Even one traveling at 80% the speed of light would be difficult to see coming, and hence be something of a surprise!
 

Similar threads

Replies
15
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
Replies
5
Views
3K
Replies
17
Views
2K
  • · Replies 23 ·
Replies
23
Views
4K
  • · Replies 12 ·
Replies
12
Views
1K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 10 ·
Replies
10
Views
11K
  • · Replies 9 ·
Replies
9
Views
5K
Replies
3
Views
2K