MHB Method of characteristics-How can I continue?

  • Thread starter Thread starter mathmari
  • Start date Start date
  • Tags Tags
    Method
Click For Summary
The discussion focuses on solving a hyperbolic system of equations using the method of characteristics. The participants analyze the eigenvalues and eigenvectors of the system's matrix to derive characteristic equations. They explore the conditions under which certain transformations can be applied, specifically regarding the constancy of the ratio x/t. The conversation progresses to solving the characteristic equations and determining the form of the solution, ultimately leading to the conclusion that v_+ is constant when expressed as a function of x-t-(C/3)t^3. The participants seek clarification on whether to treat C as a constant or to replace it with x/t in their calculations.
mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

I have to solve the following hyperbolic system of equations using the method of characteristics:

$$\left.\begin{matrix}
\frac{\partial{u_1}}{\partial{t}}+\frac{\partial{u_1}}{\partial{x}}+x^2 \frac{\partial{u_2}}{\partial{x}}=0\\
\frac{\partial{u_2}}{\partial{t}}+t^2 \frac{\partial{u_1}}{\partial{x}}+\frac{\partial{u_2}}{\partial{x}}=0
\end{matrix}\right\}$$

$ A=\begin{bmatrix}
1 & x^2\\
t^2 & 1
\end{bmatrix}$

$\displaystyle{u_t+Au_x=0}$

To check if it is hyperbolic, we have to find the eigenvalues:$\displaystyle{det(A-\lambda I)=(1-\lambda)^2-(xt)^2=0 \Rightarrow \lambda=1 \pm xt}$

$\gamma^T=\begin{bmatrix}
\gamma_1 & \gamma_2
\end{bmatrix}$: left eigenvectors

  • $\lambda=1-xt:$
To find the eigenvector, we do the following:

$$\gamma^T(A-\lambda I)=0 \Rightarrow \begin{bmatrix}
\gamma_1 & \gamma_2
\end{bmatrix} \begin{bmatrix}
xt & x^2\\
t^2 & xt
\end{bmatrix}=\begin{bmatrix}
0 & 0
\end{bmatrix}$$

We set $\gamma_1=1$, so $\gamma_2=-\frac{x}{t}$

We take the linear combination of the equations:

$$\gamma_1(\frac{\partial{u_1}}{\partial{t}}+\frac{\partial{u_1}}{\partial{x}}+x^2 \frac{\partial{u_2}}{\partial{x}})+\gamma_2 ( \frac{\partial{u_2}}{\partial{t}}+t^2 \frac{\partial{u_1}}{\partial{x}}+\frac{\partial{u_2}}{\partial{x}} )=0$$

$$(\frac{\partial{u_1}}{\partial{t}}-\frac{x}{t}\frac{\partial{u_2}}{\partial{t}})+((1-xt)\frac{\partial{u_1}}{\partial{x}}+(x^2-\frac{x}{t})\frac{\partial{u_2}}{\partial{x}})=0$$

I cannot write it as followed:

$$\frac{\partial}{\partial{t}}(u_1-\frac{x}{t}u_2)+(1-xt) \frac{\partial}{\partial{t}}(u_1-\frac{x}{t}u_2)=0$$

right??

So I cannot write it as a total derivative of something...

How can I continue then??
 
Physics news on Phys.org
mathmari said:
I cannot write it as followed:

$$\frac{\partial}{\partial{t}}(u_1-\frac{x}{t}u_2)+(1-xt) \frac{\partial}{\partial{x}}(u_1-\frac{x}{t}u_2)=0$$

right??

So I cannot write it as a total derivative of something...

How can I continue then??

Hi! (Wasntme)

You can write it like that only if $\frac x t$ is constant.
So I think that is what you need:
$$x = C t$$
 
I like Serena said:
Hi! (Wasntme)

You can write it like that only if $\frac x t$ is constant.
So I think that is what you need:
$$x = C t$$

Ahaa... (Thinking)

  • $\lambda=1+xt$

$\displaystyle{\gamma_1=1, \gamma_2=\frac{x}{t}}$

$$\gamma_1(\frac{\partial{u_1}}{\partial{t}}+\frac{\partial{u_1}}{\partial{x}}+x^2 \frac{\partial{u_2}}{\partial{x}})+\gamma_2 ( \frac{\partial{u_2}}{\partial{t}}+t^2 \frac{\partial{u_1}}{\partial{x}}+\frac{\partial{u_2}}{\partial{x}} )=0$$$$(\frac{\partial{u_1}}{\partial{t}}+\frac{x}{t}\frac{\partial{u_2}}{\partial{t}})+(1+xt)(\frac{\partial{u_1}}{\partial{x}}+\frac{x}{t}\frac{\partial{u_2}}{\partial{x}})=0$$

$$(\frac{\partial{u_1}}{\partial{t}}+C\frac{\partial{u_2}}{\partial{t}})+(1+Ct)(\frac{\partial{u_1}}{\partial{x}}+C\frac{\partial{u_2}}{\partial{x}})=0$$

$$\frac{\partial}{\partial{t}}(u_1+Cu_2)+(1+Ct) \frac{\partial}{\partial{x}}(u_1+Cu_2)=0$$

We set $\displaystyle{v_+=u_1+Cu_2}$:

$$\frac{\partial}{\partial{t}}v_++(1+Ct) \frac{\partial}{\partial{x}}v_+=0$$

$$\frac{dv_+}{dt}=\frac{\partial{v_+}}{\partial{t}}+\frac{dx}{dt}\frac{\partial{v_+}}{\partial{t}}=0 \text{ when } \frac{dx}{dt}=1+Ct$$

To solve the equation $\displaystyle{\frac{dx}{dt}=1+Ct }$, do I consider $C$ as a constant?? Or do I have to replace it with $\displaystyle{\frac{x}{t}}$?? (Wondering)
 
mathmari said:
$$(\frac{\partial{u_1}}{\partial{t}}+\frac{x}{t}\frac{\partial{u_2}}{\partial{t}})+(1+xt)(\frac{\partial{u_1}}{\partial{x}}+\frac{x}{t}\frac{\partial{u_2}}{\partial{x}})=0$$

$$(\frac{\partial{u_1}}{\partial{t}}+C\frac{\partial{u_2}}{\partial{t}})+(1+Ct)(\frac{\partial{u_1}}{\partial{x}}+C\frac{\partial{u_2}}{\partial{x}})=0$$

Wah? :eek:
To solve the equation $\displaystyle{\frac{dx}{dt}=1+Ct }$, do I consider $C$ as a constant?? Or do I have to replace it with $\displaystyle{\frac{x}{t}}$?? (Wondering)

Yep. Like a constant. (Mmm)
 
I like Serena said:
Wah? :eek:

It should be as followed, shouldn't it?? (Blush) (Sweating)

$$(\frac{\partial{u_1}}{\partial{t}}+\frac{x}{t}\frac{\partial{u_2}}{\partial{t}})+(1+xt)(\frac{\partial{u_1}}{\partial{x}}+\frac{x}{t}\frac{\partial{u_2}}{\partial{x}})=0$$

$$(\frac{\partial{u_1}}{\partial{t}}+C\frac{\partial{u_2}}{\partial{t}})+(1+Ct^2)(\frac{\partial{u_1}}{\partial{x}}+C\frac{\partial{u_2}}{\partial{x}})=0$$

$$\frac{\partial}{\partial{t}}(u_1+Cu_2)+(1+Ct^2) \frac{\partial}{\partial{x}}(u_1+Cu_2)=0$$

We set $\displaystyle{v_+=u_1+Cu_2}$:

$$\frac{\partial}{\partial{t}}v_++(1+Ct^2) \frac{\partial}{\partial{x}}v_+=0$$

$$\frac{dv_+}{dt}=\frac{\partial{v_+}}{\partial{t}}+\frac{dx}{dt}\frac{\partial{v_+}}{\partial{t}}=0 \text{ when } \frac{dx}{dt}=1+Ct^2$$

$\displaystyle{\frac{dx}{dt}=1+Ct^2 \Rightarrow dx=(1+Ct^2)dt \Rightarrow x=t+\frac{C}{3}t^3+a \Rightarrow a=x-t-\frac{C}{3}t^3}$

So $v_+$ is constant when $x-t-\frac{C}{3}t^3$ is constant, so
$$v_+=f(x-t-\frac{C}{3}t^3)$$Or have I done something wrong?? (Wondering)
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
4K
  • · Replies 3 ·
Replies
3
Views
4K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 9 ·
Replies
9
Views
826
Replies
3
Views
2K