MHB Mgf of continuous random variables

Click For Summary
The discussion focuses on finding the moment-generating function (MGF) of a continuous random variable with the probability density function (PDF) f(x) = 2x for 0 < x < 1. The MGF is calculated using the integral M(S) = ∫ e^(Sx) f(x) dx, leading to the integral ∫ e^(Sx) 2x dx. There is some confusion regarding the integration process, with a suggestion to use integration by parts, which results in the expression 2(e^S(s-1)+1)/s^2. Additionally, there are clarifications needed regarding the transformation of the random variable Y = aX + b and the correct formulation of M_Y(S). The conversation highlights the importance of precise notation in probability theory.
nacho-man
Messages
166
Reaction score
0
i have a simple enough question

Find the MGF of a continuous random variable with the PDF:

f(x) = 2x, 0<x<1

I understand MGF is calculated as:

$$M(S) = \int_{-\infty}^{+\infty} e^{Sx} f(x)dx$$

which would give me

$$\int_{-\infty}^{+\infty} e^{Sx} 2xdx$$
but how would i compute this integral?edit: scratch that. I think i am on the right track here, someone check?

if Y = aX + b, then
$$M_{y}(S) = E[e^{2S}] = e^{S}E[E^{2Sx}]$$

$$M_{y}(S) = e^S \int_{0}^{1}e^{2Sx}dx
= ... $$

$$= e^{S}(\frac{e^{2S}}{2s} - \frac{1}{2S}) $$
Is this correct?/ Am I on the correct track?

On another note, let's celebrate me getting the hang of latex! Yay (Clapping)
 
Last edited:
Physics news on Phys.org
nacho said:
I understand MGF is calculated as:

$$M(S) = \int_{-\infty}^{+\infty} e^{Sx} f(x)dx$$

which would give me

$$\int_{-\infty}^{+\infty} e^{Sx} 2xdx$$
but how would i compute this integral?
Integrating by parts gives \[\int_{0}^{1} e^{Sx}2x\,dx =2\frac{e^s(s-1)+1}{s^2}\]You can check WolframAlpha.

nacho said:
if Y = aX + b, then
$$M_{y}(S) = E[e^{2S}] = e^{S}E[E^{2Sx}]$$
What? Where did $a$ and $b$ go? Also, $M_Y(S)=E[e^{YS}]$, not $E[e^{2S}]$.
 
Edit: previous poster already replied
 
There is a nice little variation of the problem. The host says, after you have chosen the door, that you can change your guess, but to sweeten the deal, he says you can choose the two other doors, if you wish. This proposition is a no brainer, however before you are quick enough to accept it, the host opens one of the two doors and it is empty. In this version you really want to change your pick, but at the same time ask yourself is the host impartial and does that change anything. The host...

Similar threads

  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
4K
  • · Replies 25 ·
Replies
25
Views
3K
Replies
2
Views
2K
  • · Replies 30 ·
2
Replies
30
Views
4K
  • · Replies 16 ·
Replies
16
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K