MHB Min Value of $\dfrac{a+3c}{a+2b+c}$+$\dfrac{4b}{a+b+2c}$+$\dfrac{8c}{a+b+3c}$

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Minimum Value
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Let $a,\,b$ and $c$ be positive real numbers. Determine the minimum value of $\dfrac{a+3c}{a+2b+c}+\dfrac{4b}{a+b+2c}+\dfrac{8c}{a+b+3c}$.
 
Mathematics news on Phys.org
Let

$x=a+2b+c,\\y=a+b+2c,\\z=a+b+3c$

It is easy to see that $z-y=c$ and $x-y=b-c$, giving $x-y=b-(z-y)$ or $b=x+z-2y$. Note that $a+3c=2y-x$. By the AM-GM inequality, it follows that

$\dfrac{a+3c}{a+2b+c}+\dfrac{4b}{a+b+2c}+\dfrac{8c}{a+b+3c}\\=\dfrac{2y-x}{x}+\dfrac{4( \dfrac{2y-x}{x} )}{y}- \dfrac{8(z-y)}{z}\\=-17+2\left(\dfrac{y}{x}\right)+4\left(\dfrac{x}{y}\right)+4\left(\dfrac{z}{y}\right)+8\left(\dfrac{y}{z}\right)\\ \ge -17+2\sqrt{8}+2\sqrt{32}\\=-17+12\sqrt{2}$

The equality holds if and only if $\dfrac{2y}{x}=\dfrac{4x}{y}$ and $\dfrac{4z}{y}=\dfrac{8y}{z}$, or $4x^2=2y^2=z^2$. Hence, the equality holds if and only if

$a+b+2c=\sqrt{2}(a+2b+c)\\a+b+3c=2(a+2b+c)$

Solving the above system of equations for $b$ and $c$ in terms of $a$ gives

$b=(1+\sqrt{2})a\\c=(4+3\sqrt{2})a$

We conclude that $\dfrac{a+3c}{a+2b+c}+\dfrac{4b}{a+b+2c}+\dfrac{8c}{a+b+3c}$ has a minimum value of $12\sqrt{2}-17$ if and only if

$(a,\,b,\,c)=(a,\,(1+\sqrt{2})a,\,(4+3\sqrt{2})a)$
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Back
Top