MHB Mind-Boggling Puzzle: Solve How Many Parts Each Worker Got

  • Thread starter Thread starter Wilmer
  • Start date Start date
  • Tags Tags
    parts Puzzle
Wilmer
Messages
303
Reaction score
0
Found this challenging:

A,B and C work at same speed.
When all 3 of them plant a field with D, the job gets done in 5 hours.
When all 3 of them plant the same field with E, the job gets done in 6 hours.
The field was divided between the 5 workers in proportion to their 5 work rates,
into a 2digit square number of parts, with E getting only 1 part.
A, B, C and D all got an integer number of parts.
How many parts did each get?
 
Mathematics news on Phys.org
But... but... you changed the numbers in your solution. :eek:

Here's my solution.

Say $A,B,C,D,E$ are the number of parts each gets.
Let $a,b,c,d,e$ be their respective work rates in parts per hour.
And let $P$ be the square 2-digit number of parts.
Then it follows that:
\begin{array}{l}
A=B=C \\
a=b=c \\
A+B+C+D+E=P \\
E=1 \\
\frac Aa = \frac Bb = \frac Cc = \frac Dd = \frac Ee \\
5(a+b+c+d)=P \\
6(a+b+c+e)=P \\
\end{array}

We can simplify this to:
$$\left\{\begin{array}{l}
3A+D+1=P \\
\frac Aa = \frac Dd = \frac 1e \\
15a+5d=P \\
18a+6e=P \\
A,D \text{ whole numbers} \\
P \text{ square 2-digit number} \\
\end{array}\right.$$

By enumerating all square 2-digit numbers, we find $A=B=C=13,\ D=9,\ P=49$ as the only solution.
It will take them $\frac{234}{49} \approx 4 \text{ hours and }47\text{ minutes}$ to plant the field.
 
Last edited:
I have a good memory, but it's short(Nerd)
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top