MHB Mind-Boggling Puzzle: Solve How Many Parts Each Worker Got

  • Thread starter Thread starter Wilmer
  • Start date Start date
  • Tags Tags
    parts Puzzle
AI Thread Summary
A, B, and C work at the same speed and complete a field with D in 5 hours and with E in 6 hours. The field is divided into a two-digit square number of parts, with E receiving only 1 part, while A, B, C, and D receive integer amounts. The equations derived from their work rates and total parts lead to the conclusion that A, B, and C each receive 13 parts, D receives 9 parts, and the total number of parts is 49. The time taken to plant the field is approximately 4 hours and 47 minutes. This puzzle highlights the relationship between work rates and the division of tasks among workers.
Wilmer
Messages
303
Reaction score
0
Found this challenging:

A,B and C work at same speed.
When all 3 of them plant a field with D, the job gets done in 5 hours.
When all 3 of them plant the same field with E, the job gets done in 6 hours.
The field was divided between the 5 workers in proportion to their 5 work rates,
into a 2digit square number of parts, with E getting only 1 part.
A, B, C and D all got an integer number of parts.
How many parts did each get?
 
Mathematics news on Phys.org
But... but... you changed the numbers in your solution. :eek:

Here's my solution.

Say $A,B,C,D,E$ are the number of parts each gets.
Let $a,b,c,d,e$ be their respective work rates in parts per hour.
And let $P$ be the square 2-digit number of parts.
Then it follows that:
\begin{array}{l}
A=B=C \\
a=b=c \\
A+B+C+D+E=P \\
E=1 \\
\frac Aa = \frac Bb = \frac Cc = \frac Dd = \frac Ee \\
5(a+b+c+d)=P \\
6(a+b+c+e)=P \\
\end{array}

We can simplify this to:
$$\left\{\begin{array}{l}
3A+D+1=P \\
\frac Aa = \frac Dd = \frac 1e \\
15a+5d=P \\
18a+6e=P \\
A,D \text{ whole numbers} \\
P \text{ square 2-digit number} \\
\end{array}\right.$$

By enumerating all square 2-digit numbers, we find $A=B=C=13,\ D=9,\ P=49$ as the only solution.
It will take them $\frac{234}{49} \approx 4 \text{ hours and }47\text{ minutes}$ to plant the field.
 
Last edited:
I have a good memory, but it's short(Nerd)
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top