MHB Minimum of product of 2 functions

Click For Summary
The minimum of the product of two nonnegative functions is less than or equal to the product of their minimums. This is based on the principle that if both functions yield nonnegative values, the inequality holds true. However, if the functions can produce negative values, this relationship does not apply, as demonstrated by a counterexample. In such cases, the product of the minima can exceed the minimum of the products. Understanding these conditions is crucial for analyzing function behavior in mathematical contexts.
sarrah1
Messages
55
Reaction score
0
Hello

Simple question

Whether the minimum of the product of two functions in one single variable, is it greater or less than the product of their minimum
thanks
Sarrah
 
Physics news on Phys.org
If the values of both functions are nonnegative, then the product of minima is less than or equal to the minimum of products. This relies on the following fact about real numbers: if $0\le x_1\le y_1$ and $0\le x_2\le y_2$, then $x_1x_2\le y_1y_2$.

For example, consider functions $f$ and $g$ and just two values in the domain: $x_1$ and $x_2$. Let $a_1=f(x_1)$, $a_2=f(x_2)$, $b_1=g(x_1)$, $b_2=g(x_2)$, Then $\min(a_1,a_2)\le a_1$ and $\min(b_1,b_2)\le b_1$, so by the fact above $\min(a_1,a_2)\min(b_1,b_2)\le a_1b_1$. Similarly $\min(a_1,a_2)\min(b_1,b_2)\le a_2b_2$, so $\min(a_1,a_2)\min(b_1,b_2)\le\min(a_1b_1,a_2b_2)$.

If the numbers can be negative, then this conclusion no longer holds. For example, if $a_1=1$, $a_2=2$ and $b_1=b_2=-1$, then $\min(a_1,a_2)\min(b_1,b_2)=1\cdot(-1)=-1>-2=\min(-1,-2)=\min(a_1b_1,a_2b_2)$,
 
Evgeny.Makarov said:
If the values of both functions are nonnegative, then the product of minima is less than or equal to the minimum of products. This relies on the following fact about real numbers: if $0\le x_1\le y_1$ and $0\le x_2\le y_2$, then $x_1x_2\le y_1y_2$.

For example, consider functions $f$ and $g$ and just two values in the domain: $x_1$ and $x_2$. Let $a_1=f(x_1)$, $a_2=f(x_2)$, $b_1=g(x_1)$, $b_2=g(x_2)$, Then $\min(a_1,a_2)\le a_1$ and $\min(b_1,b_2)\le b_1$, so by the fact above $\min(a_1,a_2)\min(b_1,b_2)\le a_1b_1$. Similarly $\min(a_1,a_2)\min(b_1,b_2)\le a_2b_2$, so $\min(a_1,a_2)\min(b_1,b_2)\le\min(a_1b_1,a_2b_2)$.

If the numbers can be negative, then this conclusion no longer holds. For example, if $a_1=1$, $a_2=2$ and $b_1=b_2=-1$, then $\min(a_1,a_2)\min(b_1,b_2)=1\cdot(-1)=-1>-2=\min(-1,-2)=\min(a_1b_1,a_2b_2)$,

I am extremely grateful
Sarrah
 

Similar threads

Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
Replies
20
Views
2K
  • · Replies 18 ·
Replies
18
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K