Minimum Perimeter of a Trapezoid: Find R & P

  • Context: MHB 
  • Thread starter Thread starter Albert1
  • Start date Start date
  • Tags Tags
    Minimum Perimeter
Click For Summary

Discussion Overview

The discussion revolves around finding the maximum area (R) and minimum perimeter (P) of a trapezoid ABCD, where sides AD and BC are parallel, sides AB and CD are equal, and both diagonals AC and BD measure 15 units. The focus is on the mathematical reasoning and proofs related to these geometric properties.

Discussion Character

  • Mathematical reasoning, Technical explanation, Debate/contested

Main Points Raised

  • One participant presents a problem involving a trapezoid and requests to find its maximum area and minimum perimeter.
  • Another participant confirms the correctness of the initial answers but requests a detailed solution.
  • A different participant claims to provide a more definitive proof for the maximum area and asserts that the previously stated minimum perimeter is incorrect.
  • A subsequent post reiterates the original problem statement and begins to outline a solution without providing further details.

Areas of Agreement / Disagreement

There appears to be disagreement regarding the minimum perimeter, with one participant challenging the correctness of an earlier claim. The discussion remains unresolved on this point.

Contextual Notes

Some assumptions regarding the trapezoid's dimensions and properties may be implicit but are not explicitly stated. The mathematical steps leading to the claims about area and perimeter are not fully detailed.

Albert1
Messages
1,221
Reaction score
0
a trapezoid $ABCD,$ with $\overline {AD}// \overline {BC}, \overline {AB}=\overline {CD}$, and diagonal $\overline {AC}=15=\overline {BD}$
if R is its maximum area ,please find :
(1)R
(2)find its minimum perimeter P
 
Mathematics news on Phys.org
$$(1)\quad R=\dfrac{225}{2}$$

$$(2)\quad P=30\sqrt2$$
 
greg1313 said:
$$(1)\quad R=\dfrac{225}{2}$$

$$(2)\quad P=30\sqrt2$$
your answers are correct ,please show your solution
 
I calculated the area and perimeter of a square with diagonals of 15 units.
 
First, I give a more definitive proof for the maximum area. Next, I show that the answer for minimum perimeter is wrong.
For any convex quadrilateral, the area is 1/2 the magnitude of the cross product of the diagonals. In this case $${225\over 2}|\sin(\theta)|$$
Here $\theta$ is the angle between the diagonals. This is obviously maximized when $\theta=\pi/2$. Note there are many different isosceles trapezoids with equal diagonals of 15 that attain this maximum area.

Next, consider the rectangle with vertices $A=(x_0,y_0)=(7.5\cos(\theta),7.5\sin(\theta))$, $B=(x_0,-y_0)$, $C=(-x_0,-y_0)$ and $D=(-x_0,y_0)$. The perimeter is then $p=30\cos(\theta)+4\sin(\theta)$. Thus $p$ can be arbitrarily close to 30 by choosing $\theta$ to be sufficiently close to 0. I believe, but can not prove, that any isosceles trapezoid with diagonals of 15 has perimeter at least 30, but no such trapezoid attains the minimum of 30.
Edit:
I feel a little foolish. This was definitely a case of the forest hiding the trees. In triangle $ABD$, $|AB|+|DA|>|BD|=15$. Similarly for the other two sides of the trapezoid. So the perimeter is strictly greater than 30.
 
Last edited:
Albert said:
a trapezoid $ABCD,$ with $\overline {AD}// \overline {BC}, \overline {AB}=\overline {CD}$, and diagonal $\overline {AC}=15=\overline {BD}$
if R is its maximum area ,please find :
(1)R
(2)find its minimum perimeter P
my solution :
 

Attachments

  • minimum of Perimeter.jpg
    minimum of Perimeter.jpg
    25.9 KB · Views: 159
Last edited by a moderator:

Similar threads

Replies
2
Views
2K
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
1
Views
1K
Replies
2
Views
2K
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K