MHB Minimum Perimeter of a Trapezoid: Find R & P

  • Thread starter Thread starter Albert1
  • Start date Start date
  • Tags Tags
    Minimum Perimeter
Albert1
Messages
1,221
Reaction score
0
a trapezoid $ABCD,$ with $\overline {AD}// \overline {BC}, \overline {AB}=\overline {CD}$, and diagonal $\overline {AC}=15=\overline {BD}$
if R is its maximum area ,please find :
(1)R
(2)find its minimum perimeter P
 
Mathematics news on Phys.org
$$(1)\quad R=\dfrac{225}{2}$$

$$(2)\quad P=30\sqrt2$$
 
greg1313 said:
$$(1)\quad R=\dfrac{225}{2}$$

$$(2)\quad P=30\sqrt2$$
your answers are correct ,please show your solution
 
I calculated the area and perimeter of a square with diagonals of 15 units.
 
First, I give a more definitive proof for the maximum area. Next, I show that the answer for minimum perimeter is wrong.
For any convex quadrilateral, the area is 1/2 the magnitude of the cross product of the diagonals. In this case $${225\over 2}|\sin(\theta)|$$
Here $\theta$ is the angle between the diagonals. This is obviously maximized when $\theta=\pi/2$. Note there are many different isosceles trapezoids with equal diagonals of 15 that attain this maximum area.

Next, consider the rectangle with vertices $A=(x_0,y_0)=(7.5\cos(\theta),7.5\sin(\theta))$, $B=(x_0,-y_0)$, $C=(-x_0,-y_0)$ and $D=(-x_0,y_0)$. The perimeter is then $p=30\cos(\theta)+4\sin(\theta)$. Thus $p$ can be arbitrarily close to 30 by choosing $\theta$ to be sufficiently close to 0. I believe, but can not prove, that any isosceles trapezoid with diagonals of 15 has perimeter at least 30, but no such trapezoid attains the minimum of 30.
Edit:
I feel a little foolish. This was definitely a case of the forest hiding the trees. In triangle $ABD$, $|AB|+|DA|>|BD|=15$. Similarly for the other two sides of the trapezoid. So the perimeter is strictly greater than 30.
 
Last edited:
Albert said:
a trapezoid $ABCD,$ with $\overline {AD}// \overline {BC}, \overline {AB}=\overline {CD}$, and diagonal $\overline {AC}=15=\overline {BD}$
if R is its maximum area ,please find :
(1)R
(2)find its minimum perimeter P
my solution :
 

Attachments

  • minimum of Perimeter.jpg
    minimum of Perimeter.jpg
    25.9 KB · Views: 136
Last edited by a moderator:
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top