MHB Minimum Perimeter of a Trapezoid: Find R & P

  • Thread starter Thread starter Albert1
  • Start date Start date
  • Tags Tags
    Minimum Perimeter
Click For Summary
The discussion focuses on calculating the maximum area (R) and minimum perimeter (P) of a trapezoid with specific properties: parallel sides AD and BC, equal non-parallel sides AB and CD, and equal diagonals AC and BD measuring 15. A definitive proof for the maximum area is provided, confirming that R can be calculated using the trapezoid's dimensions. However, there is a claim that the initial answer for the minimum perimeter is incorrect, prompting a reevaluation of P. The participants engage in deriving the correct values for both R and P, emphasizing the geometric relationships involved. The thread highlights the importance of accurate calculations in geometric problems.
Albert1
Messages
1,221
Reaction score
0
a trapezoid $ABCD,$ with $\overline {AD}// \overline {BC}, \overline {AB}=\overline {CD}$, and diagonal $\overline {AC}=15=\overline {BD}$
if R is its maximum area ,please find :
(1)R
(2)find its minimum perimeter P
 
Mathematics news on Phys.org
$$(1)\quad R=\dfrac{225}{2}$$

$$(2)\quad P=30\sqrt2$$
 
greg1313 said:
$$(1)\quad R=\dfrac{225}{2}$$

$$(2)\quad P=30\sqrt2$$
your answers are correct ,please show your solution
 
I calculated the area and perimeter of a square with diagonals of 15 units.
 
First, I give a more definitive proof for the maximum area. Next, I show that the answer for minimum perimeter is wrong.
For any convex quadrilateral, the area is 1/2 the magnitude of the cross product of the diagonals. In this case $${225\over 2}|\sin(\theta)|$$
Here $\theta$ is the angle between the diagonals. This is obviously maximized when $\theta=\pi/2$. Note there are many different isosceles trapezoids with equal diagonals of 15 that attain this maximum area.

Next, consider the rectangle with vertices $A=(x_0,y_0)=(7.5\cos(\theta),7.5\sin(\theta))$, $B=(x_0,-y_0)$, $C=(-x_0,-y_0)$ and $D=(-x_0,y_0)$. The perimeter is then $p=30\cos(\theta)+4\sin(\theta)$. Thus $p$ can be arbitrarily close to 30 by choosing $\theta$ to be sufficiently close to 0. I believe, but can not prove, that any isosceles trapezoid with diagonals of 15 has perimeter at least 30, but no such trapezoid attains the minimum of 30.
Edit:
I feel a little foolish. This was definitely a case of the forest hiding the trees. In triangle $ABD$, $|AB|+|DA|>|BD|=15$. Similarly for the other two sides of the trapezoid. So the perimeter is strictly greater than 30.
 
Last edited:
Albert said:
a trapezoid $ABCD,$ with $\overline {AD}// \overline {BC}, \overline {AB}=\overline {CD}$, and diagonal $\overline {AC}=15=\overline {BD}$
if R is its maximum area ,please find :
(1)R
(2)find its minimum perimeter P
my solution :
 

Attachments

  • minimum of Perimeter.jpg
    minimum of Perimeter.jpg
    25.9 KB · Views: 151
Last edited by a moderator:
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

Replies
2
Views
2K
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
1
Views
1K
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K