MHB Minimum Perimeter of a Trapezoid: Find R & P

  • Thread starter Thread starter Albert1
  • Start date Start date
  • Tags Tags
    Minimum Perimeter
AI Thread Summary
The discussion focuses on calculating the maximum area (R) and minimum perimeter (P) of a trapezoid with specific properties: parallel sides AD and BC, equal non-parallel sides AB and CD, and equal diagonals AC and BD measuring 15. A definitive proof for the maximum area is provided, confirming that R can be calculated using the trapezoid's dimensions. However, there is a claim that the initial answer for the minimum perimeter is incorrect, prompting a reevaluation of P. The participants engage in deriving the correct values for both R and P, emphasizing the geometric relationships involved. The thread highlights the importance of accurate calculations in geometric problems.
Albert1
Messages
1,221
Reaction score
0
a trapezoid $ABCD,$ with $\overline {AD}// \overline {BC}, \overline {AB}=\overline {CD}$, and diagonal $\overline {AC}=15=\overline {BD}$
if R is its maximum area ,please find :
(1)R
(2)find its minimum perimeter P
 
Mathematics news on Phys.org
$$(1)\quad R=\dfrac{225}{2}$$

$$(2)\quad P=30\sqrt2$$
 
greg1313 said:
$$(1)\quad R=\dfrac{225}{2}$$

$$(2)\quad P=30\sqrt2$$
your answers are correct ,please show your solution
 
I calculated the area and perimeter of a square with diagonals of 15 units.
 
First, I give a more definitive proof for the maximum area. Next, I show that the answer for minimum perimeter is wrong.
For any convex quadrilateral, the area is 1/2 the magnitude of the cross product of the diagonals. In this case $${225\over 2}|\sin(\theta)|$$
Here $\theta$ is the angle between the diagonals. This is obviously maximized when $\theta=\pi/2$. Note there are many different isosceles trapezoids with equal diagonals of 15 that attain this maximum area.

Next, consider the rectangle with vertices $A=(x_0,y_0)=(7.5\cos(\theta),7.5\sin(\theta))$, $B=(x_0,-y_0)$, $C=(-x_0,-y_0)$ and $D=(-x_0,y_0)$. The perimeter is then $p=30\cos(\theta)+4\sin(\theta)$. Thus $p$ can be arbitrarily close to 30 by choosing $\theta$ to be sufficiently close to 0. I believe, but can not prove, that any isosceles trapezoid with diagonals of 15 has perimeter at least 30, but no such trapezoid attains the minimum of 30.
Edit:
I feel a little foolish. This was definitely a case of the forest hiding the trees. In triangle $ABD$, $|AB|+|DA|>|BD|=15$. Similarly for the other two sides of the trapezoid. So the perimeter is strictly greater than 30.
 
Last edited:
Albert said:
a trapezoid $ABCD,$ with $\overline {AD}// \overline {BC}, \overline {AB}=\overline {CD}$, and diagonal $\overline {AC}=15=\overline {BD}$
if R is its maximum area ,please find :
(1)R
(2)find its minimum perimeter P
my solution :
 

Attachments

  • minimum of Perimeter.jpg
    minimum of Perimeter.jpg
    25.9 KB · Views: 138
Last edited by a moderator:
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top