MHB Mitch's question at Yahoo Answers regarding a polar equation

  • Thread starter Thread starter MarkFL
  • Start date Start date
  • Tags Tags
    Polar
MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the question:

Calculus II Polar Coordinates?

Find the slope of the tangent line to the given polar curve at the point specified by the value of Ɵ using the exact answer: r = 2 - sinƟ, Ɵ = π/3

Here is a link to the question:

Calculus II Polar Coordinates?

I have posted a link there to this topic so the OP can find my response.
 
Mathematics news on Phys.org
Re: Mitch's questions at Yahoo! Answers regarding a polar equation

Hello Mitch,

We need to use the chain rule as follows to find the slope of the tangent line:

[math]\frac{dy}{dx}=\frac{dy}{d\theta}\cdot\frac{d\theta}{dx}[/math]

and we need the conversions from polar to Cartesian coordinate systems:

[math]x=r\cos(\theta)=(2-\sin(\theta))\cos(\theta)[/math]

[math]y=r\sin(\theta)=(2-\sin(\theta))\sin(\theta)[/math]

Hence, using the product rule, we find:

[math]\frac{dx}{d\theta}=(2-\sin(\theta))(-\sin(\theta))+(-\cos(\theta))\cos(\theta)=-2\sin(\theta)+\sin^2(\theta)-\cos^2(\theta)=-(2\sin(\theta)+\cos(2\theta))[/math]

[math]\frac{dy}{d\theta}=(2-\sin(\theta))\cos(\theta)+(-\cos(\theta))\sin(\theta)=2\cos(\theta)(1-\sin(\theta))[/math]

Thus, we have:

[math]\frac{dy}{dx}=\frac{2\cos(\theta)(\sin(\theta)-1)}{2\sin(\theta)+\cos(2\theta)}[/math]

[math]\frac{dy}{dx}|_{\theta=\frac{\pi}{3}}=\frac{2\cdot\frac{1}{2}\left(\frac{\sqrt{3}}{2}-1 \right)}{2\frac{\sqrt{3}}{2}-\frac{1}{2}}=\frac{\sqrt{3}-2}{2\sqrt{3}-1}=\frac{4-3\sqrt{3}}{11}[/math]

We now have the slope, now the point:

[math](x,y)=(r\cos(\theta),r\sin(\theta))=\left(\frac{4-\sqrt{3}}{4},\frac{4\sqrt{3}-3}{4} \right)[/math]

And so, using the point-slope formula, we find the equation of the tangent line is:

[math]y-\frac{4\sqrt{3}-3}{4}=\frac{4-3\sqrt{3}}{11}\left(x-\frac{4-\sqrt{3}}{4} \right)[/math]

Writing this in slope-intercept form, we obtain:

[math]y=\frac{4-3\sqrt{3}}{11}x+\frac{30\sqrt{3}-29}{22}[/math]

To Mitch and any other guests viewing this topic, I invite and encourage you to register and post other calculus problems here in our http://www.mathhelpboards.com/f10/ forum.

Best Regards,

Mark.
 
I notice only now that the OP is only asked for the slope of the tangent line...but I suppose is is better to provide too much rather than not enough information. (Giggle)

Once we have the slope, and can find the point, it only seems natural to go ahead and find the line. (Malthe)
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top