Please see attached.(adsbygoogle = window.adsbygoogle || []).push({});

I am trying to show that

## T_{p} f (\tau + 1) = T_{p} f (\tau ) ##

##f(\tau) \in M_k ## and so can be written as a expansion as ##f(\tau)=\sum\limits^{\infty}_{0}a_{n}e^{2 \pi i n \tau } ##

##f(\tau + 1) = f(\tau) ## since ##e^{2\pi i n} = 1##

Similarly ##f(p\tau + p) = f(p\tau) ## for the same reason since ##np \in Z \geq 1 ## so the extra exponential term is ##1## again.

But I DONT UNDERSTAND how it goes from ##f(\frac{\tau + 1 + j}{p}) = f(\frac{\tau+j}{p}) ## , since it is not guarenteed that ##1/p## is an integer, I mean it only is when ##p=1## so ##e^{2 \pi n i (t+1+j)/p} = e^{ 2 \pi i n (t+j)/p}e^{2 \pi i n (1/p) } ## and ##e^{2 \pi i n (1/p) } ## is equal to ##1## only when ##p=1##. second equality of attached.

help please. thank you.

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# I Modular form quick question translation algebra

Have something to add?

Draft saved
Draft deleted

**Physics Forums | Science Articles, Homework Help, Discussion**