MHB Moment of Inertia: Disc+Point Mass | Help Needed

AI Thread Summary
To find the moment of inertia of a disc with a point mass on its circumference, the moment of inertia of the disc is calculated as 1/2mr^2. The point mass contributes an additional moment of inertia of mr^2, where r is the radius of the disc. By applying the parallel axes theorem, the total moment of inertia is the sum of both contributions, resulting in I = 1/2mr^2 + mr^2. This simplifies to I = 11/2 ml^2, confirming the answer found in the textbook. Understanding these calculations is essential for accurately determining the moment of inertia in composite systems.
markosheehan
Messages
133
Reaction score
0
Find the moment of inertia of a disc of mass m and radius r with a point mass of m on its circumference. i can't work this out can someone help me. i can work out that the moment of inertia of the disc is 1/2mr^2 but i don't know what to do with the point mass. i think it could have to do with some thing with the parallel axes theorem. the answer at the back of the book is 11/2 ml^2
 
Mathematics news on Phys.org
markosheehan said:
Find the moment of inertia of a disc of mass m and radius r with a point mass of m on its circumference. i can't work this out can someone help me. i can work out that the moment of inertia of the disc is 1/2mr^2 but i don't know what to do with the point mass. i think it could have to do with some thing with the parallel axes theorem. the answer at the back of the book is 11/2 ml^2

The moment of inertia is the sum of all mass contributions times their squared distances to the axis.
In formula:
$$I_z = \sum_i m_i r^2$$
or for a body:
$$I_z = \int r^2\,dm $$

It implies that we can sum the two contributions of moment of inertia together (with respect to the same axis).
And it also implies that a point mass $m$ rotating at distance $r$ from the axis has moment of inertia $mr^2$.
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top