Momentum Operator for the real scalar field

Click For Summary
The discussion revolves around the calculation of the momentum operator for a real scalar field, focusing on the conjugate momentum definition and its implications. A participant expresses uncertainty about completing the calculation and seeks clarification on specific terms that arise, particularly regarding the term involving \( (a_{-p}^\dagger a_p^\dagger + a_{-p}a_p) \). Another participant points out that the integral of this term vanishes due to its antisymmetry when changing variables, thus simplifying the overall expression. Additionally, there is a critique of the initial definition of the conjugate momentum used, suggesting a more standard approach found in quantum field theory literature. The conversation emphasizes the importance of proper definitions and symmetry properties in quantum mechanics calculations.
Markus Kahn
Messages
110
Reaction score
14
Homework Statement
Show that the momentum for the real scalar field reduces to
$$\vec{P} = \int \frac{dp^3}{(2\pi)^3 2e(p)} \vec{p} a_p^\dagger a_p.$$
Relevant Equations
$$\vec{P}=-\int dx^3 \pi \nabla \phi$$
$$\phi(\vec x )= \int \frac{dp^3}{(2\pi)^3 2e(p)} (a_pe^{ipx} + a^\dagger_p e^{-ipx})$$
$$\pi(\vec x )= \int \frac{dp^3}{(2\pi)^3 }\frac{i}{2} (a_p^\dagger e^{-ipx} - a_p e^{ipx})$$
I think the solution to this problem is a straightforward calculation and I think I was able to make reasonable progress, but I'm not sure how to finish this...

$$\begin{align*} \vec{P}&=-\int dx^3 \pi \nabla \phi\\
&= -\int\int\int dx^3\frac{dp^3}{(2\pi)^3 2e(p)} \frac{du^3}{(2\pi)^3} \frac{i}{2} \left(a_u^\dagger e^{-iux} - a_u e^{iux}\right)\nabla \left(a_pe^{ipx} + a^\dagger_p e^{-ipx}\right)\\
&= -\int\int\int dx^3\frac{dp^3}{(2\pi)^3 2e(p)} \frac{du^3}{(2\pi)^3} \frac{i}{2} (ip)\left(a_u^\dagger e^{-iux} - a_u e^{iux}\right)\left(a_pe^{ipx} - a^\dagger_p e^{-ipx}\right)\\
&= \int\int\int dx^3\frac{dp^3}{(2\pi)^3 2e(p)} \frac{du^3}{(2\pi)^3} \frac{p}{2} \left(a_u^\dagger e^{-iux} - a_u e^{iux}\right)\left(a_pe^{ipx} - a^\dagger_p e^{-ipx}\right)\\
&= \int\int\frac{dp^3}{(2\pi)^3 2e(p)} \frac{du^3}{(2\pi)^3}\times \\& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\frac{p}{2} \int dx^3 \left(a_u^\dagger a_p e^{i(p-u)x} +a_ua_p^\dagger e^{i(u-p)x} -a_u^\dagger a_p^\dagger e^{-i(u+p)x} - a_ua_p e^{i(p+u)x}\right)
\end{align*}$$

I know applied to every term of the sum the following formula:
$$\delta (x-\alpha )={\frac {1}{2\pi }}\int _{-\infty }^{\infty }e^{ip(x-\alpha )}\ dp,$$
which resulted in

$$\begin{align*}\vec{P}&= \int\int\frac{dp^3}{(2\pi)^3 2e(p)} \frac{du^3}{(2\pi)^3}\times \\& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\frac{p}{2}(2\pi)^3 \left(a_u^\dagger a_p \delta(p-u) +a_ua_p^\dagger \delta(u-p) -a_u^\dagger a_p^\dagger \delta(u+p) - a_ua_p \delta(p+u)\right)\\
&= \int \frac{dp^3}{(2\pi)^3 2e(p)} \frac{p}{2}\times\\ &\,\,\,\,\,\,\,\,\,\,\,\,\,\, \int du^3 \left(a_u^\dagger a_p \delta(u-p) +a_ua_p^\dagger \delta(u-p) -a_u^\dagger a_p^\dagger \delta(u+p) - a_ua_p \delta(u+p)\right)
\end{align*}$$
I'm not too sure about this step, but I basically used
$$\int f(x)\,\delta(x-a)\,dx =\int f(x)\,\delta(a-x)\,dx.$$
If I continue from here on I arrive at
$$\begin{align*}\vec P &= \int \frac{dp^3}{(2\pi)^3 2e(p)} \frac{p}{2}\times\\ &\,\,\,\,\,\,\,\,\,\,\,\,\,\, \int du^3 \left((a_u^\dagger a_p+a_ua_p^\dagger )\delta(u-p) -(a_u^\dagger a_p^\dagger + a_ua_p) \delta(u+p)\right)\\
&=\int \frac{dp^3}{(2\pi)^3 2e(p)} \frac{p}{2}\times (a_p^\dagger a_p+a_pa_p^\dagger )-(a_{-p}^\dagger a_p^\dagger + a_{-p}a_p)\\
&=\int \frac{dp^3}{(2\pi)^3 2e(p)} \frac{p}{2}\times (2a_p^\dagger a_p+1 )-(a_{-p}^\dagger a_p^\dagger + a_{-p}a_p)\\
&=\int \frac{dp^3}{(2\pi)^3 2e(p)} p (a_p^\dagger a_p+\frac{1}{2} ) -(a_{-p}^\dagger a_p^\dagger + a_{-p}a_p)
\end{align*}$$
The term corresponding to the ##1/2## in parenthesis can be resolved with renormalization (as far as I understand), so we don't really need to bother with it. But what about the ##(a_{-p}^\dagger a_p^\dagger + a_{-p}a_p)##? How do I get rid of that?
 
Physics news on Phys.org
Hi.
Say E(p)=E(-p), the integrand of
-\frac{1}{4}\int \frac{dp^3}{(2\pi)^3E(p)}p(a^\dagger_{-p} a^\dagger_p+a_{-p}a_p)
is antisymmetric for inverse of p . So the integral vanishes.
 
  • Like
Likes Markus Kahn
Hello Markus Kanh!
So, I examined your calculation and I have feeling that something is odd in your definition of conjugate momentum of the field. In the books that I have learning I never see yet that definition. I often see the following definition $$\pi(\vec x)=-i\int \frac {d^{3}p} {(2\pi)^{3} } {\sqrt{E_{p}/ 2}}(a_{p}e^{ipx}-a_{p}e^{-ipx})$$ One example is in the Peskin's book ''An introduction to QFT''. Anyway... this is just one comment.
About your question, we can show that the second term in your last equation is zero##\int \frac p {(2\pi)^{3}2E_p} (a_{-p}^\dagger a_{p}^\dagger+a_{-p}a_{p})\,d^{3}p=^{!}0##.
Consider the following integral $$I=\int \frac p {(2\pi)^{3}2E_p} a_{-p}^\dagger a_{p}^\dagger\,d^{3}p$$ we can change the variable ##p\to-p## That change don't change the value of integral because that integral is evaluated in all p-space. $$I=-\int \frac p {(2\pi)^{3}2E_p} a_{p}^\dagger a_{-p}^\dagger\,d^{3}p$$ summing these two pieces above, we have $$2I=\int \frac p {(2\pi)^{3}2E_p} (a_{-p}^\dagger a_{p}^\dagger-a_{p}^\dagger a_{-p}^\dagger)\,d^{3}p$$ that is $$2I=\int \frac p {(2\pi)^{3}2E_p}[a_{-p}^\dagger,a_{p}^\dagger]\,d^{3}p$$ note that ##[a_{-p}^\dagger,a_{p}^\dagger]=0## in this way we can saying that $$I=0$$ Similarly, we can show that the second term in the your last equation is also zero.
 
Last edited:

Similar threads

Replies
27
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
2
Views
2K
Replies
1
Views
2K
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K