MHB Yes, your factorization is correct.

  • Thread starter Thread starter mathdad
  • Start date Start date
  • Tags Tags
    Factoring
Click For Summary
SUMMARY

The expression A^2 - B^2 + 16A + 64 can be factored using the method of grouping and recognizing perfect squares. The correct factorization is (A + 8 + B)(A + 8 - B), derived from rewriting the expression as (A + 8)^2 - B^2. The initial grouping approach was incorrect as it treated the expression as a sum of two separate factors rather than a single difference of squares. This discussion clarifies the importance of recognizing perfect squares in polynomial expressions.

PREREQUISITES
  • Understanding of polynomial factorization techniques
  • Familiarity with the difference of squares identity
  • Knowledge of perfect square trinomials
  • Basic algebraic manipulation skills
NEXT STEPS
  • Study the difference of squares and its applications in polynomial factorization
  • Learn about perfect square trinomials and how to identify them
  • Practice factoring various polynomial expressions using grouping
  • Explore additional examples from Precalculus by David Cohen, 3rd Edition, focusing on Chapter 1, Section 1.3
USEFUL FOR

Students studying precalculus, educators teaching algebraic concepts, and anyone looking to improve their polynomial factorization skills.

mathdad
Messages
1,280
Reaction score
0
Precalculus by David Cohen, 3rd Edition
Chapter 1, Section 1.3.
Question 50.

Factor the expression.

A^2 - B^2 + 16A + 64

Factor by grouping method.

Group A = A^2 - B^2

Group A = (A - B)(A + B)

Group B = 16A + 64

Group B = 16(A + 4)

Group A + Group B

(A - B)(A + B) + 16(A + 4)

Correct?
 
Mathematics news on Phys.org
RTCNTC said:
Precalculus by David Cohen, 3rd Edition
Chapter 1, Section 1.3.
Question 50.

Factor the expression.

A^2 - B^2 + 16A + 64

Factor by grouping method.

Group A = A^2 - B^2

Group A = (A - B)(A + B)

Group B = 16A + 64

Group B = 16(A + 4)

Group A + Group B

(A - B)(A + B) + 16(A + 4)

Correct?

No.
above is not factors. it is sum of 2 expressions

$A^2 - B^2 + 16A + 64 = A^2 + 16A + 64 - B^2 = (A+8)^2 - B^2 = (A+8+B)(A+8-B)$
 
Last edited:
kaliprasad said:
No.
above is not factors. it is sum of 2 expressions

$A^2 - B^2 + 16A + 64 = A^2 + 16A + 64 - B^2 = (A+8)^2 - B^2 = (A+8+B)(A+8-B)$

Why did you put B^2 to the far right?

Why did you put 16A + 64 in the center between A^2 and B^2?
 
Because it was convenient. Kaliprasad recognized that A^2a+ 16A+ 64= (A+ 8)^2 is itself a "perfect square" so this could be written as a single "difference of squares"
 
More factoring questions will be posted tomorrow from section 1.3 in David Cohen's precalculus textbook, third edition.
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 11 ·
Replies
11
Views
3K
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K