MHB Motion of an Element: Understand Rheology Notes

  • Thread starter Thread starter renlok
  • Start date Start date
  • Tags Tags
    Element Motion
renlok
Messages
12
Reaction score
0
I'm working through my rheology notes and there is a fairly basic part that I don't understand at all.

If you have two neighbouring points in a liquid P(x,y,z) and $$Q(x + \Delta{x}, y + \Delta{y}, z + \Delta{z})$$ now if the velocity components of P are given as (u, v, w) then $$u_Q = u_P + \frac{\delta{u}}{\delta{x}}\Delta{x} + \frac{\delta{u}}{\delta{y}}\Delta{y} + \frac{\delta{u}}{\delta{z}}\Delta{z}$$ which i understand its a quite simple derivation and we have similar equations of v & w

But then he just goes on to say

"Then $$u_Q = u_P + \frac{1}{2}(\frac{\delta{u}}{\delta{z}} - \frac{\delta{w}}{\delta{x}})\Delta{z} - \frac{1}{2}(\frac{\delta{v}}{\delta{x}}-\frac{\delta{u}}{\delta{y}})\Delta{y} + \frac{\delta{u}}{\delta{x}}\Delta{x} + \frac{1}{2}(\frac{ \delta {u}}{\delta {y}}+\frac{\delta {v}}{ \delta {x} })\Delta{y} + \frac{1}{2}(\frac{\delta{u}}{\delta {z}}+\frac{ \delta {w}}{\delta{x}})\Delta{z}$$"

which i don't understand what this is let alone how it was derived I also couldn't find it anywhere on the net

Cheers for any insight you may have
 
Last edited by a moderator:
Mathematics news on Phys.org
renlok said:
I'm working through my rheology notes and there is a fairly basic part that I don't understand at all.

If you have two neighbouring points in a liquid P(x,y,z) and $$Q(x + \Delta{x}, y + \Delta{y}, z + \Delta{z})$$ now if the velocity components of P are given as (u, v, w) then $$u_Q = u_P + \frac{\delta{u}}{\delta{x}}\Delta{x} + \frac{\delta{u}}{\delta{y}}\Delta{y} + \frac{\delta{u}}{\delta{z}}\Delta{z}$$ which i understand its a quite simple derivation and we have similar equations of v & w

But then he just goes on to say

"Then $$u_Q = u_P + \frac{1}{2}(\frac{\delta{u}}{\delta{z}} - \frac{\delta{w}}{\delta{x}})\Delta{z} - \frac{1}{2}(\frac{\delta{v}}{\delta{x}}-\frac{\delta{u}}{\delta{y}})\Delta{y} + \frac{\delta{u}}{\delta{x}}\Delta{x} + \frac{1}{2}(\frac{\delta {u}}{\delta {y}}+\frac{\delta {v}}{\delta {x}})\Delta{y} + \frac{1}{2}(\frac{\delta {u}}{\delta {z}}+\frac{\delta {w}}{\delta {x}})\Delta{z}$$"

which i don't understand what this is let alone how it was derived I also couldn't find it anywhere on the net

Cheers for any insight you may have

I'll take a crack at it. All the author has done to get this last line is to add and subtract various elements. If you simplify this last line, you get the earlier line. This step must be a setup: the author must be trying to recognize this more complicated expression as something else - it looks to me like a cross product, but without more context, I don't know what it is.
 
Last edited by a moderator:
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top