Motion of Particles in Uniform Gravitational Field

Click For Summary

Discussion Overview

The discussion revolves around the motion of two particles in a uniform gravitational field, specifically analyzing the conditions under which their velocities become mutually perpendicular. Participants explore the mathematical relationships and equations governing the motion, including time calculations and distance separation between the particles.

Discussion Character

  • Mathematical reasoning
  • Technical explanation
  • Exploratory

Main Points Raised

  • One participant presents the initial conditions of two particles moving horizontally with different velocities and seeks to find the distance between them when their velocities are perpendicular.
  • Another participant suggests drawing a velocity diagram to analyze the situation and proposes that the vertical component of velocity should reach \(2 \sqrt{3}\) m/s at the point of perpendicularity.
  • A third participant derives equations of motion for the particles and establishes a relationship between their velocities and the time taken for them to become perpendicular, concluding that \(t = \frac{\sqrt{v_1 v_2}}{g}\).
  • Further, the same participant calculates the horizontal distances covered by each particle during time \(t\) and expresses the total separation as \((v_1 + v_2) \frac{\sqrt{v_1 v_2}}{g}\).
  • Another participant confirms the previous calculations using a triangle relationship and reiterates the derived time expression.

Areas of Agreement / Disagreement

Participants generally agree on the mathematical approach and the derived expressions for time and separation, but there is no explicit consensus on the correctness of the specific numerical values or the interpretation of the velocity diagram.

Contextual Notes

Some assumptions regarding the uniformity of the gravitational field and the initial conditions are implicit. The discussion does not resolve potential discrepancies in the numerical values proposed by participants.

DrunkenOldFool
Messages
20
Reaction score
0
Two particles move in a uniform gravitational field with an acceleration $g$. At the initial moment the particles were located at one point and moved with velocities $v_1 = 3 \text{ms}^{-1}$ and $v_1 = 4 \text{ms}^{-1}$ horizontally in opposite directions. Find distance between the particles when their velocities become mutually perpendicular.
 
Physics news on Phys.org
DrunkenOldFool said:
Two particles move in a uniform gravitational field with an acceleration $g$. At the initial moment the particles were located at one point and moved with velocities $v_1 = 3 \text{ms}^{-1}$ and $v_1 = 4 \text{ms}^{-1}$ horizontally in opposite directions. Find distance between the particles when their velocities become mutually perpendicular.
The two horizontal components of velocity are constant, and the vertical components are always equal. Now draw a velocity diagram for when the two velocities are perpendicular, and solve the diagram for the vertical component of velocity (it should come to \(2 \sqrt{3}\) m/s if my scratch algebra and arithmetic are correct).

Now you can find the time \(t\) it took the vertical component to reach this value, and the separation is \(7t\) m.

CB
 
Last edited:
Let the velocities of the particles (say $\vec{v_{1}}'$ and $\vec{v_2 }'$) become perpendicular after time $t$. By equation of motion,

$$ \vec{v_{1}'}=\vec{v_{1}}+\vec{g}t \\ \vec{v_{2}'}=\vec{v_{2}}+\vec{g}t$$

As $\vec{v_1 ' }$ and $\vec{v_2 '}$ are perpendicular, we can write

$$ \begin{align*} \vec{v_1 ' } \cdot \vec{v_2 ' } &=0 \\ (\vec{v_{1}}+\vec{g}t) \cdot (\vec{v_{2}}+\vec{g}t) &= 0 \\ -v_1 v_2 +g^2 t^2 &=0 \\ t &= \frac{\sqrt{v_1 v_2}}{g}\end{align*}$$

Let $x_1$ and $x_2$ be the horizontal distances covered by particles 1 and 2 in time $t$ respectively. Note that the acceleration in horizontal direction is zero.

$$x_1 = v_1 t = v_1 \frac{\sqrt{v_1 v_2}}{g} \\ x_2 = v_2 t = v_2 \frac{\sqrt{v_1 v_2}}{g}$$

The total separation between the particles is

$$x_1+x_2= (v_1+v_2)\frac{\sqrt{v_1 v_2}}{g}$$
 
Last edited by a moderator:
This is my try.

View attachment 277

considering the triangle $ABC$,

$$\begin{align*}
\alpha &=90^\circ - \beta \\
\tan{\alpha} &= \tan (90^\circ -\beta ) \\
\tan{\alpha} &= \cot \beta \\
\frac{gt}{v_1}&=\frac{v_2}{gt}\\
g^2t^2 &=v_1\times v_2\\
\therefore t &= \frac{\sqrt{v_1v_2}}{g} \qquad since \; t>0 \\ \end{align*}

$$

the rest is as same as sbhatnagar's
 

Attachments

  • projectile.png
    projectile.png
    2 KB · Views: 122
Thank You!:)
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 7 ·
Replies
7
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 16 ·
Replies
16
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
24
Views
2K
  • · Replies 35 ·
2
Replies
35
Views
3K
  • · Replies 10 ·
Replies
10
Views
2K