MHB Motion of Particles in Uniform Gravitational Field

AI Thread Summary
Two particles in a uniform gravitational field move horizontally with initial velocities of 3 m/s and 4 m/s in opposite directions. Their vertical components of velocity increase due to gravity, and they become perpendicular after a time \( t \) calculated as \( t = \frac{\sqrt{v_1 v_2}}{g} \). The horizontal distances covered by each particle during this time are \( x_1 = v_1 t \) and \( x_2 = v_2 t \). The total separation between the particles when their velocities are perpendicular is given by \( x_1 + x_2 = (v_1 + v_2) \frac{\sqrt{v_1 v_2}}{g} \). This analysis provides a clear understanding of the motion of particles in a uniform gravitational field.
DrunkenOldFool
Messages
20
Reaction score
0
Two particles move in a uniform gravitational field with an acceleration $g$. At the initial moment the particles were located at one point and moved with velocities $v_1 = 3 \text{ms}^{-1}$ and $v_1 = 4 \text{ms}^{-1}$ horizontally in opposite directions. Find distance between the particles when their velocities become mutually perpendicular.
 
Mathematics news on Phys.org
DrunkenOldFool said:
Two particles move in a uniform gravitational field with an acceleration $g$. At the initial moment the particles were located at one point and moved with velocities $v_1 = 3 \text{ms}^{-1}$ and $v_1 = 4 \text{ms}^{-1}$ horizontally in opposite directions. Find distance between the particles when their velocities become mutually perpendicular.
The two horizontal components of velocity are constant, and the vertical components are always equal. Now draw a velocity diagram for when the two velocities are perpendicular, and solve the diagram for the vertical component of velocity (it should come to \(2 \sqrt{3}\) m/s if my scratch algebra and arithmetic are correct).

Now you can find the time \(t\) it took the vertical component to reach this value, and the separation is \(7t\) m.

CB
 
Last edited:
Let the velocities of the particles (say $\vec{v_{1}}'$ and $\vec{v_2 }'$) become perpendicular after time $t$. By equation of motion,

$$ \vec{v_{1}'}=\vec{v_{1}}+\vec{g}t \\ \vec{v_{2}'}=\vec{v_{2}}+\vec{g}t$$

As $\vec{v_1 ' }$ and $\vec{v_2 '}$ are perpendicular, we can write

$$ \begin{align*} \vec{v_1 ' } \cdot \vec{v_2 ' } &=0 \\ (\vec{v_{1}}+\vec{g}t) \cdot (\vec{v_{2}}+\vec{g}t) &= 0 \\ -v_1 v_2 +g^2 t^2 &=0 \\ t &= \frac{\sqrt{v_1 v_2}}{g}\end{align*}$$

Let $x_1$ and $x_2$ be the horizontal distances covered by particles 1 and 2 in time $t$ respectively. Note that the acceleration in horizontal direction is zero.

$$x_1 = v_1 t = v_1 \frac{\sqrt{v_1 v_2}}{g} \\ x_2 = v_2 t = v_2 \frac{\sqrt{v_1 v_2}}{g}$$

The total separation between the particles is

$$x_1+x_2= (v_1+v_2)\frac{\sqrt{v_1 v_2}}{g}$$
 
Last edited by a moderator:
This is my try.

View attachment 277

considering the triangle $ABC$,

$$\begin{align*}
\alpha &=90^\circ - \beta \\
\tan{\alpha} &= \tan (90^\circ -\beta ) \\
\tan{\alpha} &= \cot \beta \\
\frac{gt}{v_1}&=\frac{v_2}{gt}\\
g^2t^2 &=v_1\times v_2\\
\therefore t &= \frac{\sqrt{v_1v_2}}{g} \qquad since \; t>0 \\ \end{align*}

$$

the rest is as same as sbhatnagar's
 

Attachments

  • projectile.png
    projectile.png
    2 KB · Views: 109
Thank You!:)
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top