Multiplicative Inverse Proof Problem

  • Context: MHB 
  • Thread starter Thread starter A.Magnus
  • Start date Start date
  • Tags Tags
    Inverse Proof
Click For Summary

Discussion Overview

The discussion revolves around a proof problem related to the multiplicative inverse in the context of ordered fields. Participants are examining the steps required to demonstrate that if \( x \neq 0 \), then \( \frac{1}{\frac{1}{x}} = x \). The scope includes mathematical reasoning and proof validation.

Discussion Character

  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • Some participants propose that by the multiplicative inverse property, if \( x \neq 0 \), then \( \frac{1}{x} \) exists such that \( \frac{1}{x} \cdot \frac{1}{\frac{1}{x}} = 1 \).
  • Others argue that the existence of \( \frac{1}{x} \) does not imply that \( \frac{1}{\frac{1}{x}} \) exists unless it is established that \( \frac{1}{x} \neq 0 \).
  • Some participants emphasize the need to clarify the properties used in the proof, such as associativity and the properties of unity and multiplicative inverses.
  • Revised steps are presented by participants, incorporating properties like commutativity and associativity, but there are cautions about assuming these properties without proper justification.
  • There is a suggestion that the proof steps should maintain clarity regarding which properties are being applied at each stage.

Areas of Agreement / Disagreement

Participants express differing views on the correctness of the initial proof steps and the assumptions made regarding properties of multiplication. There is no consensus on the validity of the proof as presented, and multiple competing interpretations of the properties involved remain.

Contextual Notes

Participants note limitations in the initial proof steps, particularly regarding the assumptions about the properties of multiplication and the necessity of demonstrating that \( \frac{1}{x} \neq 0 \) before concluding the existence of \( \frac{1}{\frac{1}{x}} \).

A.Magnus
Messages
138
Reaction score
0
I am working on a proof problem on ordered field from a textbook, which lists additive and multiplicative properties similar to the ones here:

If $x \ne 0$, show that $\frac{1}{\frac{1}{x}} = x.$

The followings are what I was able to come out -- I just wanted to make sure that they are acceptable:

(a) By the multiplicative inverse property, there must exists $\frac{1}{x}$ such that $\frac{1}{x} \cdot \frac{1}{\frac{1}{x}} = 1$.

(b) By the same property, there must exists $x$ such that $\frac{1}{x} \cdot x = 1$.

(c) By equating the (a) and (b) above, we have $\frac{1}{x} \cdot \frac{1}{\frac{1}{x}} = \frac{1}{x} \cdot x$.

(d) By multiplying both sides with $x$, then we have $x \cdot \frac{1}{x} \cdot \frac{1}{\frac{1}{x}} = x \cdot \frac{1}{x} \cdot x$, showing that $\frac{1}{\frac{1}{x}} = x$, as desired.

Thank you for your time and gracious helps. ~MA
 
Physics news on Phys.org
MaryAnn said:
I am working on a proof problem on ordered field from a textbook, which lists additive and multiplicative properties similar to the ones here:

The followings are what I was able to come out -- I just wanted to make sure that they are acceptable:

(a) By the multiplicative inverse property, there must exists $\frac{1}{x}$ such that $\frac{1}{x} \cdot \frac{1}{\frac{1}{x}} = 1$.

Hey again MaryAnn,

This is not quite correct.
Instead we have that given $x\ne 0$ by the multiplicative inverse property, there must exist an $\frac{1}{x}$ such that $\frac{1}{x} \cdot x = 1$.

Now we know that $\frac{1}{x}$, but we do not know if it is equal to $0$ or not.
Therefore we cannot deduce yet either that its multiplicative inverse exists, can we?
It's only as soon as we can conclude that $\frac{1}{x}\ne 0$, that we can conclude by the multiplicate inverse property that $\frac{1}{\frac{1}{x}}$ must exist, and that $\frac{1}{x} \cdot \frac{1}{\frac{1}{x}} = 1$.

MaryAnn said:
(b) By the same property, there must exists $x$ such that $\frac{1}{x} \cdot x = 1$.

This is the wrong way around. We conclude from the existence of $x\ne 0$ that $\frac 1x$ exists.

MaryAnn said:
(c) By equating the (a) and (b) above, we have $\frac{1}{x} \cdot \frac{1}{\frac{1}{x}} = \frac{1}{x} \cdot x$.

This is a correct deduction.

MaryAnn said:
(d) By multiplying both sides with $x$, then we have $x \cdot \frac{1}{x} \cdot \frac{1}{\frac{1}{x}} = x \cdot \frac{1}{x} \cdot x$, showing that $\frac{1}{\frac{1}{x}} = x$, as desired.

This is true, but you are skipping a couple of steps, and you are not mentioning which properties you are using.
As it is, you are using the property of associativity (twice), the property of the multiplicative inverse (twice), and the property of unity (twice).

MaryAnn said:
Thank you for your time and gracious helps. ~MA
 
Thank you for your response! ~MA
 
How about these revised steps - hope these come out right:

(a) Since $x \neq 0$, there must exist $\frac{1}{x}$ such that $x \cdot \frac{1}{x} = 1$. (Multiplicative Inverse Property)

(b) By Commutative Property, we have $\frac{1}{x} \cdot x = 1$.

(c) Multiplying both sides of the equation by $\frac{1}{\frac{1}{x}}$, we have $\frac{1}{\frac{1}{x}} \cdot \frac{1}{x} \cdot x = 1 \cdot \frac{1}{\frac{1}{x}}$.

(d) By Property of Unity, in the right hand side we have $\frac{1}{\frac{1}{x}} \cdot \frac{1}{x} \cdot x = \frac{1}{\frac{1}{x}}$.

(e) By Associative Property, we then have $(\frac{1}{\frac{1}{x}} \cdot \frac{1}{x}) \cdot x = \frac{1}{\frac{1}{x}}$.

(f) By Property of Unity, we finally have $1 \cdot x = \frac{1}{\frac{1}{x}}$, and by the same property again $x = \frac{1}{\frac{1}{x}}$, as desired.

Thank you again for all your helps. ~MA
 
MaryAnn said:
How about these revised steps - hope these come out right:

(a) Since $x \neq 0$, there must exist $\frac{1}{x}$ such that $x \cdot \frac{1}{x} = 1$. (Multiplicative Inverse Property)

(b) By Commutative Property, we have $\frac{1}{x} \cdot x = 1$.

(c) Multiplying both sides of the equation by $\frac{1}{\frac{1}{x}}$, we have $\frac{1}{\frac{1}{x}} \cdot \frac{1}{x} \cdot x = 1 \cdot \frac{1}{\frac{1}{x}}$.

Careful, we should multiply on the same side, since we should not assume commutativity of multiplication.
And we should not assume associativity by leaving out the parentheses.
So it should be: $\frac{1}{\frac{1}{x}} \cdot \left(\frac{1}{x} \cdot x\right) = \frac{1}{\frac{1}{x}} \cdot 1$

MaryAnn said:
(d) By Property of Unity, in the right hand side we have $\frac{1}{\frac{1}{x}} \cdot \frac{1}{x} \cdot x = \frac{1}{\frac{1}{x}}$.

(e) By Associative Property, we then have $(\frac{1}{\frac{1}{x}} \cdot \frac{1}{x}) \cdot x = \frac{1}{\frac{1}{x}}$.

(f) By Property of Unity, we finally have $1 \cdot x = \frac{1}{\frac{1}{x}}$, and by the same property again $x = \frac{1}{\frac{1}{x}}$, as desired.

That's the property of multiplicative inverse instead of unity.
The second part is using the property of unity though.
 

Similar threads

  • · Replies 26 ·
Replies
26
Views
1K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
4K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 16 ·
Replies
16
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
4
Views
2K