A Muon-catalyzed fusion: muon number problem

  • A
  • Thread starter Thread starter STZweig
  • Start date Start date
STZweig
Messages
4
Reaction score
0
I recently read a paper "Meson-catalyzed fusion in ultradense plasmas" (it is behind a paywall: only subscribers to Physical Reviews E can read it) that claims that muon-catalyzed fusion in substances such as warm-dense matter lead to cycling rates many orders of magnitude greater than the rates shown for other scenarios. They also claim gains in the range of ~10-10000. I should note that the gains here are the ratios of the energy output to the energy required to produce the muons. However even if these gains are correct (and I am skeptical), there is another issue that I don't see anyone mention when discussing the potential of using muon-catalyzed fusion (MCF) as a power source: muon number. If we wanted to use MCF in a practical power plant, I am quite sure that the number of muons we would need is unobtainable at the moment Delivering the world’s most intense muon beam. Is there something I am missing that negates the problem?

Despite this, it may be possible to use MCF to spark traditional inertial confinement fusion (ICF), but the only advantage that this has that I know of is that it would be impacted less by instabilities compared to normal fast-ignition ICF.
 
Last edited:
Physics news on Phys.org
Producing the muons for a MCF reactor would be a bit easier since they wouldn't necissarily have to be focused and accelerated into a coherent beam, they just have to end up in the reaction chamber. This simplifies it a bit, and might reduce or eliminate time spent outside the reactor not catylizing anything.
 
Last edited:
Toponium is a hadron which is the bound state of a valance top quark and a valance antitop quark. Oversimplified presentations often state that top quarks don't form hadrons, because they decay to bottom quarks extremely rapidly after they are created, leaving no time to form a hadron. And, the vast majority of the time, this is true. But, the lifetime of a top quark is only an average lifetime. Sometimes it decays faster and sometimes it decays slower. In the highly improbable case that...
Back
Top