MHB Natural numbers form a poset under $ \le$

Click For Summary
The discussion focuses on proving that the set of natural numbers, $\mathbb{N}$, forms a partially ordered set (poset) under the standard order $\le$. It establishes reflexivity, antisymmetry, and transitivity as essential properties of a poset. While the initial proof is deemed trivial, participants explore the use of Euclidean division to justify these properties, although this approach is considered overly complex. The conversation highlights the importance of understanding the definitions of inequalities in natural numbers and suggests that the trivial nature of the proof may warrant further exploration of what properties of $\mathbb{N}$ are considered obvious. Overall, the consensus is that the proof is valid but straightforward.
QuestForInsight
Messages
34
Reaction score
0
Problem: let $\mathbb{N} = \left\{0, ~ 1, ...\right\}$ be the set of natural numbers. Prove that $(\mathbb{N},~\le)$ is a poset under the ordinary order.

Solution: let $x \in\mathbb{N}$, then $x \le x$ as of course $x = x$. If also $y \in\mathbb{N}$, then $x \le y$ and $y \le x$ implies $x = y$. Lastly, $x \le y$ and $y \le z$ implies $x \le z$. Therefore $(\mathbb{N}, ~ \le)$ is a poset under the ordinary order.

Is the above valid? I feel like I'm basically stating what I was asked to prove!
 
Physics news on Phys.org
I think your conscience could be eased if you try to justify using euclidean division: if $x \leq x$ then we have that $x = qx+r$ with unique $q,r$. This is true if and only if $q=1$ and $r=0$.

If $x \leq y$ and $y \leq x$ then we have $x = q_1 y + r_1$ and $y = q_2 x + r_2$. It follows that $y = q_2 (q_1 y + r_1) + r_2 = qy + r$, which by previous arguments leads to $q=1$ and $r=0$, but then $r=r_2 + q_2 r_1 = 0$ and $q=q_2 q_1 = 1$, concluding that $q_1 = q_2 = 1$ and $r_1 = r_2 = 0$.

I believe the last one can be done in a similar way. I hope this helps. (Nod)
 
Fantini said:
if $x \leq x$ then we have that $x = qx+r$ with unique $q,r$. This is true if and only if $q=1$ and $r=0$.
And what does this prove?
 
It seemed a more confident way to prove the assertions, but I confess it does seem tautological.
 
By saying "If x <= x", you assume x <= x instead of proving it. And in any case x = x and x <= x <-> x = x \/ x < x are axioms or easily derivable statements in most systems, so proving x <= x using Euclidean division is definitely more complicated than necessary. Proving antisymmetry using Euclidean division may make sense, though the first thing that comes to my mind is to express <= through < and = and use transitivity an irreflexivity of < .

As an answer to the original question, this statement is definitely trivial and I think the suggested "argument" is fine. Unless one has to prove this using specific axioms in a specific formalism, there is not much more here than to look at it and say, "Yes, this is trivial."
 
i think the crucial thing here is that:

x ≤ y

is actually:

(x = y) v (x < y).

so if you wanted to get nit-picky about it, you'd have to consider the various cases.

for example, suppose x ≤ y, and y ≤ z.

if x = y, then x ≤ z.

if x < y, and y = z, then x < z (= y), so x ≤ z.

else, if x < y < z, then x < z, so x ≤ z.

******
of course, perhaps you are meant to delve deeper:

what do we MEAN when we say: x < y, for 2 natural numbers x and y?.

we mean that y is "bigger" than x. that is, we are asserting there is a natural number k ≠ 0, with x+k = y.

so x < y, and y < z means:

there is k ≠ 0 with y = x+k, and m ≠ 0 with z = y+m.

thus z = y+m = (x+k)+m = x+(k+m).

now, to be thorough, we should verify k+m ≠ 0.

since m ≠ 0, m = s(t), for some natural number t (by definition of successor).

thus k+m = k+s(t) = s(k+t), by definition of addition on the natural numbers.

since 0 is not the successor of any natural number, k+m ≠ 0.

*******************

more generally, given any TOTAL order < on a set S, (S,≤) is a poset. in some sense these posets are "trivial": their hasse diagrams are linear. in other words, not very interesting (but not unimportant).

*******************

with questions concerning the natural numbers, it's perhaps a good question for your instructor: "what properties of $\Bbb N$ can we take as 'obvious'?"
 
There is a nice little variation of the problem. The host says, after you have chosen the door, that you can change your guess, but to sweeten the deal, he says you can choose the two other doors, if you wish. This proposition is a no brainer, however before you are quick enough to accept it, the host opens one of the two doors and it is empty. In this version you really want to change your pick, but at the same time ask yourself is the host impartial and does that change anything. The host...

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
751
Replies
13
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K