MHB Natural Solutions for Positive Variables?

  • Thread starter Thread starter Hatuk
  • Start date Start date
  • Tags Tags
    Natural
Click For Summary
The discussion explores whether a solution exists in natural numbers for a finite set of positive variables given a non-strict order on their expressions. It begins by analyzing equalities, noting that they define a subspace in real numbers with a basis of rational vectors. The thread emphasizes that rational points are dense in this subspace, allowing for approximations. It also highlights that strict inequalities and positivity conditions create an open subset containing a specific point. Ultimately, it concludes that by adjusting a rational point, an integer solution can be derived.
Hatuk
Messages
2
Reaction score
0
Hi everyone,
Consider a finite set of positive variables $P = \{x_1,x_2,\ldots, x_n \}$, and a non-strict order on the expressions $\Sigma_{x_i \subseteq P}x_i$. For example:
$$P = \{x_1,x_2,x_3\}$$
$$x_1 + x_2 + x_3 > x_1 + x_2 > x_2 + x_3 > x_1 = x_2 > x_3$$
Can we claim that if there is a solution in which $\forall i,x_i \in \mathbb{R}^+$, there must be a solution in which $\forall i, x_i \in \mathbb{N}^+$?
Thanks!
 
Mathematics news on Phys.org
You need to consider the equalities and the strict inequalities separately.

Start with the equalities. If there are $d$ of them, they will define an $(n-d)$-dimensional subspace $S$ of $\Bbb{R}^n$, which will have a basis $\{\mathbf{e}_1,\ldots,\mathbf{e}_{n-d}\}$ consisting of rational vectors (vectors with rational coordinates). [In your example, there is just one equality, $x_1 = x_2$. That defines a two-dimensional subspace of $\Bbb{R}^3$, with a basis $\{\mathbf{e}_1=(1,1,0),\mathbf{e}_2=(0,0,1)\}$.]

Every point in $S$ is of the form $\alpha_1\mathbf{e}_1 + \ldots + \alpha_{n-d}\mathbf{e}_{n-d}$, where $\alpha_1, \ldots, \alpha_{n-d}$ are real coefficients. By approximating these coefficients with rational numbers, you see that the rational points in $S$ are dense in $S$.

The strict inequalities in your set, together with the inequalities $x_i>0\ (1\leqslant i\leqslant n)$, define an open subset of $S$. You are told that this subset contains a point $\mathbf{x} = (x_1,\ldots,x_n)$. So by taking a rational point $\mathbf{r}$ in $S$ sufficiently close to $\mathbf{x}$, you can find a rational solution to the problem.

Finally, by multiplying $\mathbf{r}$ by the least common multiple of the denominators of all its coordinates, you get an integer solution to the problem.
 
Thanks!
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 25 ·
Replies
25
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
21
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 40 ·
2
Replies
40
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K