You can try the first-quantization formalism for, e.g., the Klein-Gordon field. Then you'll see that the time-evolution operator must be
$$\hat{U}(t)=\exp(-\mathrm{i} \sqrt{m^2 + \hat{\vec{p}}^2} t),$$
because energy should be positive definite, i.e., the negative-energy solutions must be abandoned, and the corresponding time evolution of the wave function with this ##\hat{U}(t)## does not fulfill the causality constraint, i.e., if you solve the KG equation with this time-evolution operator for the initial condition ##\Phi(t=0,\vec{x})=\delta^{(3)}(\vec{x})## you get for any ##t>0## a wave function ##\Phi(t,\vec{x})## which is non-zero at any ##\vec{x}##, i.e., you have faster-than-light signal-propagation through ##\Phi##, and this clearly violates relativistic causality.
The solution through QFT is that here you can write the free-field operator with both positive and negative frequency-modes without making the Hamiltonian unbound from below. That's achieved by using the Feynman-Stückelberg trick, i.e., writing an creation instead of an annihilation operator in front of the negative-frequency modes. For the Klein-Gordon field you must quantize everything as bosons to achieve all the good properties of the QFT, i.e., microcausality, ##[\hat{\Phi}(x),\hat{\Phi}(y)]=0## for ##(x-y)## spacelike and positive definiteness of the Hamiltonian:
$$\Phi(x)=\int_{\mathbb{R}^3} \frac{\mathrm{d}^3 p}{(2 \pi)^3 \sqrt{2 E_p}} [\hat{a}(\vec{p}) \exp(-\mathrm{i} x \cdot p) + \hat{b}^{\dagger}(\vec{p}) \exp(+\mathrm{i} x \cdot p]_{p^0=E_p}$$
with ##E_p=\sqrt{m^2+\vec{p}^2}##. The creation and annihilation operators have to fulfill the commutator relations
$$[hat{a}(\vec{p}),\hat{a}^{\dagger}(\vec{q})]=[\hat{b}(\vec{p}),\hat{b}^{\dagger}(\vec{q})]=(2 \pi)^3 \delta^{(3)}(\vec{p}-\vec{q})$$
with all other combinations of operator pairs in the commutator giving 0.
This construction of the microcausal field operators shows that there are necessarily anti particles (annihilated by the ##\hat{b}## operators) with the same mass as the particles (annihilated by the ##\hat{a}## operators). At the same time, thanks to the use of bosonic commutation relations for the field and thsu the annihilation-creation operators, you find a positive semidefinite Hamiltonian,
$$\hat{H}=\int_{\mathbb{R}^3} \frac{\mathrm{d}^3 p}{(2 \pi)^3} E_p [\hat{a}^{\dagger}(\vec{p}) \hat{a}(\vec{p}) +\hat{b}^{\dagger}(\vec{p}) \hat{b}(\vec{p})].$$
For a very clear discussion on an introductory level, see
https://arxiv.org/abs/1110.5013