Need help on how to find the Equivalence Ratio of combustion for plastic waste

  • Thread starter Thread starter rhmourwa
  • Start date Start date
  • Tags Tags
    Air
AI Thread Summary
The discussion focuses on calculating the Equivalence Ratio (ER) for gasification experiments using plastic waste as fuel. Participants confirm that the ultimate analysis can be used to determine the stoichiometric air-fuel ratio, despite the total not equaling 100%. A hypothetical hydrocarbon can be created from known carbon and hydrogen values to evaluate oxygen requirements for combustion. There is also a suggestion to use a spreadsheet for detailed calculations of the combustion process and to account for various burning processes and exhaust gas treatment. The importance of oxygen sensors and adjustments in real combustion scenarios is highlighted for achieving complete combustion.
rhmourwa
Messages
2
Reaction score
0
TL;DR Summary
How to find the stoichiometric air-fuel ratio and equivalence ratio of combustion (Plastic waste + Air) in the gasification of plastic waste
Hello
Actually, I'd like to find the effect of different Equivalence Ratios on my gasification experiment using plastic waste as feedstock fuel but I'm confused as to how I can find the Equivalence Ratio because I don't know the exact chemical formula of plastic waste I'm using. So I'm curious how can I calculate the stoichiometric Air-Fuel ratio of combustion? Can I use the ultimate analysis to calculate the stoichiometric Air-Fuel ratio?

This is the analysis of my feedstock (%w/w),
Moisture =10%
Ash =0.09%
VM =89.7%
FC =0.21%
C =83.1%
H =11.77%
O =4.83%
N =0.14%
S = 0.16%

I specify waste mass flowrate = 20 kg/h,
air mass flowrate = 10 kg/h
 
Engineering news on Phys.org
rhmourwa said:
Can I use the ultimate analysis to calculate the stoichiometric Air-Fuel ratio?
Yes, you can, but the total is not 100%.
What is the VM =89.7%, is that volatiles such as water ?
Does that mean the remainder is the dry fuel = 10.3% ?

If you know the carbon and the hydrogen, then you can make up a hypothetical hydrocarbon and evaluate the oxygen required for its combustion.
Some of the O =4.83% may be available.
Is the ash a silicate?
 
Baluncore said:
Yes, you can, but the total is not 100%.
What is the VM =89.7%, is that volatiles such as water ?
Does that mean the remainder is the dry fuel = 10.3% ?

If you know the carbon and the hydrogen, then you can make up a hypothetical hydrocarbon and evaluate the oxygen required for its combustion.
Some of the O =4.83% may be available.
Is the ash a silicate?
Thank you for answering. Yes, the VM means volatile matter and VM=89.7% is the weight percent of nonwater gas that is released when this plastic waste is heated in the absence of air.

So according to this reference website (this), Is this the same combustion reaction you mean? and to make up a hypothetical hydrocarbon, I change %mass basis in analysis to moles basis, and the combustion reaction will be:
C0.069H0.117 + 0.0465(O2 + 3.76N2) → 0.069CO2 + 0.0585H2O + 0.1748N2

From my understanding, this means oxygen required theoretically for combustion is 0.0465 mole but there is also 4.83%weight oxygen (=0.003 mole) in fuel. So, the amount of oxygen required is actually 0.0465-0.003 = 0.0435 mole and the stoichiometric air-fuel ratio will be = 0.0435+(0.0465*3.76) = 0.2183 mole. Am I doing it correctly? if you can correct me step by step, I'm very thankful.

and I have another question. If I want to change my actual air mass flow rate to achieve ER=1 for complete combustion. Can I determine it by using this equation:
air mass flow rate actual= Equivalence ratio * mass flowrate of fuel used * stoichiometric air-fuel ratio
 
rhmourwa said:
Am I doing it correctly? if you can correct me step by step, I'm very thankful.
I need a diagram that shows the mass flow through the analysis process. That way, I can see where the double counting is being done. For example, are the VM gasses being burnt? What do they include?

Following on from that diagram, I would use a spreadsheet to account for the many burning processes, to produce the mixed exhaust gas stream. The oxygen demand needed for that process can be computed in the spreadsheet.

There is a simple rule of thumb that says, for each one pound of hydrocarbon fuel burnt, about 14.5 pounds of air are required. That will give you a sanity check of your spreadsheet.

rhmourwa said:
... and I have another question. If I want to change my actual air mass flow rate to achieve ER=1 for complete combustion. Can I determine it by using this equation:
air mass flow rate actual= Equivalence ratio * mass flowrate of fuel used * stoichiometric air-fuel ratio
When it comes to burning a waste stream in a real furnace, there will be oxygen sensors in the exhaust, adjusting the air supply and secondary burning, or catalytic conversion of flue gasses. The precise computation of the stoichiometry will become moot, to be replaced by analysis of the bag house filtering to remove pollutants. The spreadsheet can help estimate the quantities and size of the exhaust gas processing plant.
 
Hello! I've been brainstorming on how to prevent a lot of ferrofluid droplets that are in the same container. This is for an art idea that I have (I absolutely love it when science and art come together) where I want it to look like a murmuration of starlings. Here's a link of what they look like: How could I make this happen? The only way I can think of to achieve the desired effect is to have varying droplet sizes of ferrofluid suspended in a clear viscous liquid. Im hoping for the...
Hello everyone! I am curious to learn how laboratories handle in-house chip manufacturing using soft lithography for microfluidics research. In the lab where I worked, only the mask for lithography was made by an external company, whereas the mold and chip fabrication were carried out by us. The process of making PDMS chips required around 30 min–1 h of manual work between prepolymer casting, punching/cutting, and plasma bonding. However, the total time required to make them was around 4...
Back
Top