MHB NICK's question at Yahoo Answers regarding a solid of revolution

  • Thread starter Thread starter MarkFL
  • Start date Start date
  • Tags Tags
    Revolution Solid
AI Thread Summary
The volume of the solid obtained by rotating the region bounded by the curves y=x, y=0, x=2, and x=4 about the line x=1 is calculated using both the washer and shell methods. The washer method reveals that the volume is V=76π/3, derived from two integrals that account for varying inner and outer radii. The shell method confirms this result, yielding the same volume through a different calculation approach. Both methods validate the accuracy of the volume computation. The final answer for the volume is 76π/3.
MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the question:

Calculus ii question!?

Using disks or washers, find the volume of the solid obtained by rotating the region bounded by the curves y=x, y=0, x=2, and x=4 about the line x=1.

Volume = ?

Here is a link to the question:

Calculus ii question!? - Yahoo! Answers

I have posted a link there to this topic so the OP can find my response.
 
Mathematics news on Phys.org
Hello NICK,

Using washers, we find that we have one interval where the inner radius is a function of $y$, and another in which the inner radius is constant. For both intervals, the outer radius is constant.

Thus, we find the volume is:

$$V=\pi\left(\int_0^2 3^2-1^2\,dy+\int_2^4 3^2-(y-1)^2\,dy \right)=$$

$$\pi\left(\left[8y \right]_0^2+\left[9y-\frac{1}{3}(y-1)^3 \right]_2^4 \right)=\pi\left(16+27-\frac{53}{3} \right)=\frac{76\pi}{3}$$

To check our work, let's use the shell method:

$$V=2\pi\int_2^4(x-1)x\,dx=2\pi\left[\frac{x^3}{3}-\frac{x^2}{2} \right]_2^4=$$

$$2\pi\left(\frac{40}{3}-\frac{2}{3} \right)=\frac{76\pi}{3}$$
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top