MHB No. of real solutions in polynomial equation

  • Thread starter Thread starter juantheron
  • Start date Start date
  • Tags Tags
    Polynomial
Click For Summary
The equation 1 + x/1! + x^2/2! + x^3/3! + x^4/4! is analyzed for real solutions. It can be rewritten as (1/4!)(x^4 + 4x^3 + 12x^2 + 24x + 24). The expression is shown to be greater than zero for all real values of x. Therefore, the equation has no real solutions. The conclusion is that the polynomial does not intersect the x-axis.
juantheron
Messages
243
Reaction score
1
The no. of real solution of the equation $\displaystyle 1+\frac{x}{1!}+\frac{x^2}{2!}+\frac{x^3}{3!}+\frac{x^4}{4!} = 0$
 
Mathematics news on Phys.org
Re: no. of real solution in polynomial equation

Analysis of the discriminant shows that the discriminant is 1/576 which is obviously > 0. So, either there are two pairs of complex conjugate roots or none at all.

So, check if the additional discriminant ($$8ac - 3b^2$$) is greater or smaller than 0. In this case, it is -1/3 < 0, and hence all the roots are distinct and real.
 
Last edited by a moderator:
Re: no. of real solution in polynomial equation

[sp]$ 1+\frac{x}{1!}+\frac{x^2}{2!}+\frac{x^3}{3!}+\frac{x^4}{4!} = \frac1{4!}(x^4 + 4x^3 + 12x^2 + 24x + 24) = \frac1{4!}\bigl((x^2+2x+2)^2 + 4(x+2)^2 + 4\bigr) >0$ for all real $x$, so the equation has no real solutions.[/sp]
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...

Similar threads

  • · Replies 19 ·
Replies
19
Views
3K
  • · Replies 48 ·
2
Replies
48
Views
3K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K