No Optimal Explaining Formally

  • Context: MHB 
  • Thread starter Thread starter evinda
  • Start date Start date
Click For Summary
SUMMARY

This discussion centers on the conditions under which a linear programming problem lacks an optimal solution. The participants analyze a specific example where the coefficients \( a_{ij} \) are set to -1 and \( b_j \) to 0, leading to the conclusion that the maximum value is 0 when \( x_1 = x_2 = 0 \). It is established that an optimal solution may not exist if the solution space is unbounded or if there are no feasible solutions. The conversation emphasizes the importance of boundary conditions and their angles in determining the feasibility and boundedness of solutions.

PREREQUISITES
  • Understanding of linear programming concepts
  • Familiarity with feasible regions and unbounded solutions
  • Knowledge of boundary conditions in optimization problems
  • Basic mathematical notation and operations involving inequalities
NEXT STEPS
  • Study the implications of unbounded solution spaces in linear programming
  • Learn about the role of boundary conditions in determining feasible solutions
  • Explore the concept of duality in linear programming
  • Investigate methods for proving the absence of optimal solutions
USEFUL FOR

Mathematicians, operations researchers, and students studying optimization techniques in linear programming will benefit from this discussion.

evinda
Gold Member
MHB
Messages
3,741
Reaction score
0
Hello! (Wave)

There is given the following example of a linear programming problem that has no optimal solution.

View attachment 4813

$$\begin{Bmatrix}
a_{11}x_1+a_{12}x_2 \geq b_1 & \\
a_{21}x_1+a_{22}x_2 \geq b_2 &
\end{Bmatrix} \Leftrightarrow (x_1,x_2) \in D \\ \\ \\ \\ \ \ \max_{(x_1, x_2) \in D} (x_1+x_2)$$

How could we explain formally that there is no optimal solution? (Thinking)
 

Attachments

  • graph5.png
    graph5.png
    7.8 KB · Views: 99
Physics news on Phys.org
evinda said:
Hello! (Wave)

There is given the following example of a linear programming problem that has no optimal solution.

$$\begin{Bmatrix}
a_{11}x_1+a_{12}x_2 \geq b_1 & \\
a_{21}x_1+a_{22}x_2 \geq b_2 &
\end{Bmatrix} \Leftrightarrow (x_1,x_2) \in D \\ \\ \\ \\ \ \ \max_{(x_1, x_2) \in D} (x_1+x_2)$$

How could we explain formally that there is no optimal solution? (Thinking)

Hey evinda! (Smile)

Before we can do that, we need to know more about the $a_{ij}$.
Can we for instance assume that they are non-negative? (Wondering)
 
I like Serena said:
Hey evinda! (Smile)

Before we can do that, we need to know more about the $a_{ij}$.
Can we for instance assume that they are non-negative? (Wondering)

It holds that $a_{ij} \in \mathbb{R}, x_i \geq 0, i=1, \dots, n, b_j \geq 0, j=1, \dots, m$.
 
evinda said:
It holds that $a_{ij} \in \mathbb{R}, x_i \geq 0, i=1, \dots, n, b_j \geq 0, j=1, \dots, m$.

Let's pick $a_{ij} = -1, b_j = 0$ for every $i,j$.
Can you find an optimal solution for it? (Wondering)
 
I like Serena said:
Let's pick $a_{ij} = -1, b_j = 0$ for every $i,j$.
Can you find an optimal solution for it? (Wondering)

Then it has to hold that $x_1=x_2=0$ so the maximum is equal to $0$, right?

So under which conditions isn't there an optimal solution, given that we have an unbounded space? (Thinking)
 
evinda said:
Then it has to hold that $x_1=x_2=0$ so the maximum is equal to $0$, right?

So under which conditions isn't there an optimal solution, given that we have an unbounded space? (Thinking)

Yes. (Nod)

Either when there is no solution at all, or when the solution space is unbounded in the direction of increasing value. (Thinking)

Suppose we start with 1 boundary condition.
For which angles of the line of the boundary condition will there be no feasible solution?
And for which angles will the maximum be unbounded? (Wondering)
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 42 ·
2
Replies
42
Views
7K
  • · Replies 27 ·
Replies
27
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
28
Views
5K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 32 ·
2
Replies
32
Views
5K
  • · Replies 7 ·
Replies
7
Views
2K