melese
- 19
- 0
(BGR,1989) Prove that for any integer $n>1$ the equation $\displaystyle \frac{x^n}{n!}+\frac{x^{n-1}}{(n-1)!}\cdots+\frac{x^2}{2!}+\frac{x^1}{1!}+1=0$ has no rational roots.
The discussion centers around the equation $\displaystyle \frac{x^n}{n!}+\frac{x^{n-1}}{(n-1)!}\cdots+\frac{x^2}{2!}+\frac{x^1}{1!}+1=0$ and the assertion that it has no rational roots for any integer $n>1$. The scope includes mathematical reasoning and proof exploration.
Participants generally agree on the assertion that the equation has no rational roots, but the discussion remains unresolved as no proof has been presented.
Limitations include the lack of a formal proof and the potential dependence on specific mathematical definitions or interpretations of rational roots.
melese said:(BGR,1989) Prove that for any integer $n>1$ the equation $\displaystyle \frac{x^n}{n!}+\frac{x^{n-1}}{(n-1)!}\cdots+\frac{x^2}{2!}+\frac{x^1}{1!}+1=0$ has no rational roots.
Albert said:replacing x with any negative factor of n! to (*)will not be zero
Albert said:$\displaystyle \frac{x^n}{n!}+\frac{x^{n-1}}{(n-1)!}\cdots+\frac{x^2}{2!}+\frac{x^1}{1!}+1=0----(*)$